Current Decoupling Algorithm Based on Inductance Identification in the Application of Interior Permanent Magnet Synchronous Motor Flux-Weakening Control
Liu Dongliang1, 2, Ren Jinsong1, Lin Weijie1, 2, Xu Zhenghua1
1. School of Automation Hangzhou Dianzi University Hangzhou 310018 China; 2. Wolong Electric Group Co. Ltd Shangyu 312300 China
Abstract:Current coupling effect is obvious when interior permanent magnet synchronous motor (IPMSM) runs at high speed in the flux-weakening area, which leads to big current tracking error and poor performance of torque output. A current decoupling algorithm based on inductance identification was proposed. The algorithm adopted recursive least square method with forgetting factor to identify the inductance parameters. Then the identified parameters were applied to the current decoupling algorithm based on voltage feed-forward compensation. It not only realized the current decoupling control, but also improved system robustness to inductance parameter perturbation. Simulation and experimental results demonstrate that the algorithm proposed can achieve better current control effect in flux-weakening area. It means the actual current can rapidly and accurately track the given current. As a result, the torque output is increased, and the system dynamic performance is improved.
刘栋良, 任劲松, 林伟杰, 徐正华. 基于电感辨识的电流解耦算法在内置式永磁同步电机弱磁控制中的应用[J]. 电工技术学报, 2017, 32(16): 98-105.
Liu Dongliang, Ren Jinsong, Lin Weijie, Xu Zhenghua. Current Decoupling Algorithm Based on Inductance Identification in the Application of Interior Permanent Magnet Synchronous Motor Flux-Weakening Control. Transactions of China Electrotechnical Society, 2017, 32(16): 98-105.
[1] Lin P Y, Lai Y S. Voltage control of interior permanent magnet synchronous motor drives to extend DC-link voltage utilization for flux weakening operation[J]. IEEE Industrial Electronics Society, 2010, 7500(1): 1689-1694. [2] 齐丽英, 王琛琛, 周明磊, 等. 一种异步电机的电流环解耦控制方法[J]. 电工技术学报, 2014, 29(5): 174-180. Qi Liying, Wang Chenchen, Zhou Minglei, et al. A decoupling current control scheme for induction machine controllers[J]. Transactions of China Electrotechnical Society, 2014, 29(5): 174-180. [3] 程启明, 程尹曼, 王映斐, 等. 交流电机控制策略的发展综述[J]. 电力系统保护与控制, 2011, 39(9): 145-154. Cheng Qiming, Cheng Yinman, Wang Yingfei, et al. Overview of control strategies for AC motor[J]. Power System Protection and Control, 2011, 39(9): 145-154. [4] 李汉强, 刘玉娟, 高承伟. 基于磁通观测器的电压前馈型解耦矢量控制系统[J]. 电工技术学报, 2003, 18(4): 21-24. Li Hanqiang, Liu Yujuan, Gao Chengwei. Feed forward voltage decoupling vector control system based on flux observer[J]. Transactions of China Electrotechnical Society, 2003, 18(4): 21-24. [5] 周志刚. 一种感应电机的解耦控制方法[J]. 中国电机工程学报, 2003, 23(2): 121-125. Zhou Zhigang. A induction motor decouple control- method[J]. Proceedings of the CSEE, 2003, 23(2): 121-125. [6] Harnefors L, Nee H P. Model-based current control of AC machines using the internal model control method[J]. IEEE Transactions on Industry Appli- cations, 1998, 34(1): 133-141. [7] 周华伟, 温旭辉, 赵峰, 等. 基于内模的永磁同步电机滑模电流解耦控制[J]. 中国电机工程学报, 2012, 32(15): 91-99. Zhou Huawei, Wen Xuhui, Zhao Feng, et al. Decoupled current control of permanent magnet synchronous motors drives with sliding mode control strategy based on internal model[J]. Proceedings of the CSEE, 2012, 32(15): 91-99. [8] Jinhwan J, Kwanghee N. A dynamic decoupling control scheme for high-speed operation of induction motors[J]. IEEE Transactions on Industrial Elec- tronics, 1999, 46(1): 100-110. [9] Hao Z, Xi X, Yongdong L. PI type dynamic decoupling scheme for PMSM high speed operation[C]// IEEE Proceedings of the Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, 2010: 1736-1739. [10] Briz F, Degner M W, Lorenz R D. Analysis and design of current regulators using complex vectors[J]. IEEE Transactions on Industrial Applications, 2000, 36(3): 817-825. [11] 王恩德, 黄声华. 表贴式永磁同步电机伺服系统电流环设计[J]. 中国电机工程学报, 2012, 32(33): 82-88. Wang Ende, Huang Shenghua. Current regulator design for surface permanent magnet synchronous motor servo systems[J]. Proceedings of the CSEE, 2012, 32(33): 82-88. [12] 吴荒原, 王双红, 辜承林, 等. 内嵌式永磁同步电机改进型解耦控制[J]. 电工技术学报, 2015, 30(1): 30-37. Wu Huangyuan, Wang Shuanghong, Gu Chenglin, et al. An improved decoupling control strategy for the IPMSM[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 30-37. [13] 刘婷婷, 谭彧, 吴刚, 等. 基于SVPWM的高转速永磁同步电机控制系统的研究[J]. 电力系统保护与控制, 2009, 37(12): 11-14, 19. Liu Tingting, Tan Yu, Wu Gang, et al. Simulating of high speed PMSM control system based on SVPWM[J]. Power System Protection and Control, 2009, 37(12): 11-14, 19. [14] 朱磊, 温旭辉, 赵峰, 等. 永磁同步电机弱磁失控机制及其应对策略研究[J]. 中国电机工程学报, 2011, 31(18): 67-72. Zhu Lei, Wen Xuhui, Zhao Feng, et al. Control policies to prevent PMSMs from losing control under field-weakening operation[J]. Proceedings of the CSEE, 2011, 31(18): 67-72. [15] 杨立永, 张云龙, 陈智刚, 等. 基于参数辨识的PMSM电流环在线自适应控制方法[J]. 电工技术学报, 2012, 27(3): 86-91. Yang Liyong, Zhang Yunlong, Chen Zhigang, et al. On-line adaptive control of PMSM current-loop based on parameter identification[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 86-91. [16] 符荣, 窦满峰. 电动汽车驱动用内置式永磁同步电机直交轴电感参数计算与实验研究[J]. 电工技术学报, 2014, 29(11): 30-37. Fu Rong, Dou Manfeng. d-axis and q-axis inductance calculation and experimental research on interior permanent magnet synchronous motors for EV[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 30-37. [17] 姜杰, 王学斌, 殷家敏, 等. 基于感应电动机复数简化模型的参数辨识研究[J]. 电力系统保护与控制, 2014, 42(19): 87-92. Jiang Jie, Wang Xuebin, Yin Jiamin, et al. Research on identification of induction motor based on its simplified complex quantity models[J]. Power System Protection and Control, 2014, 42(19): 87-92. [18] 邓自立. 最优估计理论及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005. [19] 刘长柱, 张根发, 冯世军, 等. 内嵌式永磁同步电机参数辨识技术[J]. 电机与控制应用, 2014, 41(12): 21-26. Liu Changzhu, Zhang Genfa, Feng Shijun, et al. Parameter estimation technique of IPMSM[J]. Elec- tric Machines & Control Application, 2014, 41(12): 21-26.