Abstract:In order to solve the problems of large current ripple of resonant snubber inverter in high-precision application, a novel zero-voltage-transition (ZVT) PWM soft-switching power converter was proposed. A LC branch is added to reduce the current ripple. In light load condition, the filter inductor current changing polarity is used to achieve zero-voltage switching of the main switches; while in heavy load condition, the properly conducted resonant branch can contribute zero-voltage switching of the main switches. Meanwhile, the auxiliary switches can work in zero-current switching. This topology has the advantages of high efficiency, low switching current ripple and fixed switching frequency. In this paper, detailed circuit operation is described and the main parameters in each period are calculated. The soft-switching condition is analyzed. A hardware prototype has been designed and tested to verify the validity of this proposed topology with relatively high switching frequency 200kHz. Compared with hard-switching power converter in the same condition, the efficiency is improved a lot. However, the efficiency is a little lower than that of RSI, but the output current noise is far lower than that of RSI.
[1] Butler H. Position control in lithographic equipment[J]. IEEE Control System, 2011, 31(5): 28-47. [2] 王晓刚, 张杰. 基于开关电感的增强型Z源三电平逆变器[J]. 电力系统保护与控制, 2015, 43(16): 65-72. Wang Xiaogang, Zhang Jie. Enhanced Z-source three-level inverter based on switched-inductor[J]. Power System Protection and Control, 2015, 43(16): 65-72. [3] 王楠, 易映萍, 张超. 微逆变器过零点电流畸变抑制的混合控制策略[J]. 电力系统保护与控制, 2014, 42(20): 59-63. Wang Nan, Yi Yingping, Zhang Chao. Hybrid control strategy for suppressing zero-crossing current distortion of micro-inverter[J]. Power System Pro- tection and Control, 2014, 42(20): 59-63. [4] 隋龙弟, 郑益慧, 王昕, 等. 基于PAM+PWM级联多电平逆变器的SVG的研究[J]. 电力系统保护与控制, 2014, 42(7): 52-59. Sui Longdi, Zheng Yihui, Wang Xin, et al. Research of cascade SVG based on PAM+PWM inverter[J]. Power System Protection and Control, 2014, 42(7): 52-59. [5] Charalambous A, Yuan X, McNeill N, et al. EMI reduction with a soft-switched auxiliary commutated pole inverter[C]//Energy Conversion Congress and Exposition (ECCE), Montreal, 2015: 2650-2657. [6] 沙广林, 王聪, 程红, 等. 双向全桥直流变换器的软开关实现与硬件参数优化[J]. 电气应用, 2015(12): 125-129. Sha Guanglin, Wang Cong, Cheng Hong, et al. Soft-switching realization and hardware parameters optimization of bi-directional full bridge DC/DC converter[J]. Electrotechnical Application, 2015(12): 125-129. [7] 肖旭, 张方华, 郑愫. 移相+PWM控制双Boost半桥双向DC-DC变换器软开关过程的分析[J]. 电工技术学报, 2015, 30(16): 17-25. Xiao Xu, Zhang Fanghua, Zheng Su. The analysis of soft-switching of the phase shift + PWM control dual Boost half-bridge bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2015, 30(16): 17-25. [8] 尹培培, 洪峰, 王成华, 等. 无源无损软开关双降压式全桥逆变器[J]. 电工技术学报, 2014, 29(6): 40-48. Yin Peipei, Hong Feng, Wang Chenghua, et al. Passive lossless soft-switching dual Buck full bridge inverter[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 40-48. [9] 周飞, 姚修远, 吴学智, 等. 考虑谐振回路损耗的辅助谐振换流极开关损耗分析[J]. 电工技术学报, 2014, 29(8): 211-218. Zhou Fei, Yao Xiuyuan, Wu Xuezhi, et al. Analysis of auxiliary resonant commutated pole’s switching losses considering the losses of the resonant circuit[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 211-218. [10] 王强, 刘岩松, 陈祥雪, 等. 具有简单辅助电路的并联谐振直流环节软开关逆变器[J]. 电工技术学报, 2014, 29(6): 91-97. Wang Qiang, Liu Yansong, Chen Xiangxue, et al. Parallel resonant DC link soft-switching inverter with a simple auxiliary circuit[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 91-97. [11] 贺虎成, 刘卫国, 李榕, 等. 电机驱动用新型谐振直流环节电压源逆变器[J]. 中国电机工程学报, 2008, 28(12): 60-65 He Hucheng, Liu Weiguo, Li Rong, et al. A novel resonant DC link voltage source inverter for motor drives[J]. Proceedings of the CSEE, 2008, 28(12): 60-65. [12] 王强, 王天施, 孙海军, 等. 新型高效率并联谐振直流环节软开关逆变器[J]. 电工技术学报, 2013, 28(5): 219-226. Wang Qiang, Wang Tianshi, Sun Haijun, et al. Novel high efficiency parallel resonant DC link soft- switching inverter[J]. Transactions of China Electro- technical Society, 2013, 28(5): 219-226. [13] Li R, Ma Z, Xu D. A ZVS grid-connected three-phase inverter[J]. IEEE Transactions on Power Electronics, 2012, 27(8): 3595-3604. [14] 周飞. IZCT/ARCP ZVT软开关变流器的研究[D]. 北京: 北京交通大学, 2014. [15] Divan D M, Skibinski G. Zero-switching-loss inverters for high-power applications[J]. IEEE Transactions on Industry Applications, 1989, 25(4): 634-643. [16] Zhang Q, Hu H, Zhang D, et al. A controlled-type ZVS technique without auxiliary components for the low power DC/AC inverter[J]. IEEE Transactions on Power Electronics, 2013, 28(7): 3287-3296. [17] Schellekens J M, Duarte J L, Hendrix M A M, et al. Interleaved switching of parallel ZVS hysteresis current controlled inverters[C]//International Power Electronics Conference(IPEC), Sapporo, 2010: 2822- 2829. [18] Teichmann R, Bernet S. Investigation and comparison of auxiliary resonant commutated pole converter topologies[C]//Power Electronics Specialists Conference, Fukuoka, 1998: 15-23. [19] Lai J, Young R. A delta-configured auxiliary resonant Snubber inverter[J]. IEEE Transactions on Industry Applications, 1996, 32(3): 518-525. [20] Lai J. Resonant snubber based soft-switching inverters for electric propulsion drives[J]. IEEE Transactions on Industrial Electronics, 1997, 44(1): 71-80. [21] Hoshi N, Hachiga Y, Kurihara H. Experimental considerations on adjustable dead-time control scheme for resonant snubber inverter[C]//Power Conversion Conference, Nagoya, 2007: 108-115. (编辑 陈 诚)