Numerical Simulation and Analysis of Characteristics of Drag Type Vertical Axis Wind Turbine for Distributed Energy Systems
Li Zheng1, Gao Peifeng1, Sun Tiantian1, Xue Zengtao1, Wang Qunjing2
1.School of Electrical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China; 2. National Engineering Laboratory of Energy-Saving Motor & Control Technique Anhui University Hefei 230601 China
Abstract:The properties of the drag type vertical axis wind turbine (VAWT) for small distributed energy systems have been investigated. Based on the original turbine structure, the turbine rotor is increased to two layers. The characteristics are calculated by Computational Fluid Dynamics (CFD) software, according to the aerodynamic principles, the fluid-solid coupling effects of turbine and air flow are simulated, the distribution of wind velocity in the flow field and the integrated force of the turbine at different rotation angles are analyzed, according to the torque characteristics, the mathematical model of the wind turbine is established in Matlab, then the mathematical model of the wind turbine power generation system is established by using the method of maximum power tracking control, and the voltage, current and other power generation curves of the generator can be calculated; Finally, compared with the measured data, the correctness of numerical simulation and analysis is verified. The results provide the guide and reference for further turbine structure optimization and efficiency improvement of same kind of wind turbines.
李争, 高培峰, 孙甜甜, 薛增涛, 王群京. 分布式能源系统垂直轴风机特性的数值模拟与分析[J]. 电工技术学报, 2017, 32(11): 155-163.
Li Zheng, Gao Peifeng, Sun Tiantian, Xue Zengtao, Wang Qunjing. Numerical Simulation and Analysis of Characteristics of Drag Type Vertical Axis Wind Turbine for Distributed Energy Systems. Transactions of China Electrotechnical Society, 2017, 32(11): 155-163.
[1] 张元, 郝丽丽, 戴嘉祺. 风电场等值建模研究综述[J]. 电力系统保护与控制, 2015, 43(6): 138-146. Zhang Yuan, Hao Lili, Dai Jiaqi. Overview of the equivalent model research for wind farms[J].Power System Protection and Control, 2015, 43(6): 138-146. [2] 沈小军, 杜万里. 大型风力发电机偏航系统控制策略研究现状及展望[J]. 电工技术学报, 2015, 30(10): 196-203. Shen Xiaojun, Du Wanli. Current situation and prospect of control strategy for large scale wind turbine yaw system[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 196-203. [3] 杨欢, 赵荣祥, 辛焕海, 等. 海岛电网发展现状与研究动态[J]. 电工技术学报, 2013, 28(11): 95-105. Yang Huan, Zhao Rongxiang, Xin Huanhai, et al. Development and research status of island power systems[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 95-105. [4] Zhao Junhui, Wang Caisheng, Zhao Bo, et al. A review of active management for distribution networks: current status and future development trends[J]. Electric Power Components and Systems, 2014, 42(3-4): 280-293. [5] Ahmadi P, Ahmadi P. Computational study of the vertical axis wind turbines: wake dynamics and generated torque[D]. Montreal:Concordia University,2013. [6] Placide J, Francois G, Alain B. Aerodynamic and mechanical system modeling of a vertical axis wind turbine (VAWT)[C]//Proceedings of IEEE Conference on Electrical and Control Engineering, Yichang, China, 2011: 5189-5192. [7] Kou Wei, Shi Xinchun, Yuan Bin, et al. Modeling analysis and experimental research on a combined-type vertical axis wind turbine[C]//Proceedings of IEEE Conference on Electronics, Communications and Control, Zhejiang, China, 2011: 1537-1541. [8] Chang L J, Hsu U K, Miao J M, et al. Numerical studies of the flow field over a hybrid VAWT with different torque[C]//Proceedings of IEEE Conference on Consumer Electronics, Communications and Networks, Xianning, China, 2011: 5077-5081. [9] Ahmed A, Ran L, Bumby J R. New constant electrical power soft-stalling control for small-scale VAWTs[J]. IEEE Transactions on Energy Conversion, 2010, 25(4): 1152-1161. [10] 赵振宙, 王同光, 黄娟, 等. 安装角对立轴风轮气动性能影响分析[J]. 中国电机工程学报, 2014, 34(8): 1304-1309. Zhao Zhenzhou, Wang Tongguang, Huang Juan, et al. Influence analysis of installation angles on aerodynamics of vertical axis wind rotors[J]. Proceedings of the CSEE, 2014, 34(8): 1304-1309. [11] 陈杰, 陈家伟, 龚春英,等. 变速风力发电系统统一功率控制策略研究[J]. 电工技术学报, 2014, 29(10): 256-265. Chen Jie, Chen Jiawei, Gong Chunying, et al. Research on unified power control strategy for variable speed wind power generation system[J]. Transactions of China Electrotechnical Society, 2014, 29(10): 256-265. [12] 耿华, 杨耕. 变速变桨距风电系统的功率水平控制[J]. 中国电机工程学报, 2008, 28(25): 130-137. Geng Hua, Yang Geng. Output power level control of variable-speed variable-pitch wind generators[J]. Proceedings of the CSEE, 2008, 28(25): 130-137. [13] 管维亚, 吴峰, 鞠平. 直驱永磁风力发电系统仿真与优化控制[J]. 电力系统保护与控制, 2014, 42(9): 54-60. Guan Weiya, Wu Feng, Jü Ping. Simulation and optimal control of direct drive permanent magnet wind power generation system[J]. Power System Protection and Control, 2014, 42(9): 54-60. [14] Howell R, Qin Ning, Edwards J, et al. Wind tunnel and numerical study of a small vertical axis wind turbine[J]. Renewable Energy, 2010, 35(2): 412-422. [15] Hamada K, Smithb T, Durrani N, et al. Unsteady flow simulation and dynamic stall around vertical axis wind turbine blades[C]//Proceedings of AIAA Aerospace Science Meeting And Exhibit, Reno, Nevada, 2007: 7-10. [16] Preen R, Bull L. Towards the convolution of novel vertical-axis wind turbines[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(6): 480-492. [17] Li Ye, Calisal S M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine[J]. Renewable Energy, 2010, 35(10): 325-334. [18] Tongchitpakdee C, Benjanirat S, Sankar L N. Numerical simulation of the aerodynamics of horizontal axis wind turbines under yawed flow conditions[J]. Journal of Solar Energy Engineering, 2005, 127(4): 464-474. [19] Hsu M H. Dynamic behaviour of wind turbine blades[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222(8): 1453-1464. [20] Veers P S, Ashwill T D, Sutherland H J, et al. Trends in the design, manufacture and evaluation of wind turbine rotor[J]. Wind Energy, 2003, 6(3): 245-259. [21] Duquette M M, Visser K D. Numerical implications of solidity and blade number on rotor performance of horizontal-axis wind turbines[J]. Journal of Solar Energy Engineering, 2003, 125(4): 425-432. [22] 卓毅鑫, 徐铝洋, 林湘宁. 风电场动态联合仿真平台构建及风况影响分析[J]. 电工技术学报, 2014, 29(增刊1): 356-364. Zhuo Yixin, Xu Lüyang, Lin Xiangning. Construction of dynamic joint simulation platform of wind farm and analysis of wind power[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 356-364. [23] Michelassi V, Wissink J G, Frohlich J, et al. Large-eddy simulation of flow around low-pressure turbine blade with incoming wakes[J]. AIAA Journal, 2003, 41(11): 2143-2156. [24] 田兵, 赵克, 孙东阳, 等. 改进型变步长最大功率跟踪算法在风力发电系统中的应用[J]. 电工技术学报, 2016, 31(6): 226-233. Tian Bing, Zhao Ke, Sun Dongyang, et al.Application of improved variable step size maximum power tracking algorithm in wind power generation system[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 226-233. [25] 程明, 韩鹏, 魏新迟. 无刷双馈风力发电机的设计、分析与控制[J]. 电工技术学报, 2016, 31(19): 37-53. Cheng Ming, Han Peng, Wei Xinchi.Design, analysis and control of brushless doubly fed wind power generator[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 37-53.