Abstract:In this paper, an asymmetrical phase-shift (APS) control for the series-parallel (LCC-type) resonant converter was proposed. A pulse width modulation (PWM) and phase-shift combined modulation scheme was implemented to achieve two independent control variables, which introduced additional degrees of freedom in control. The steady-state characteristics of the converter were analyzed including output power, zero-voltage switching (ZVS) operation and resonant current. This analysis demonstrates that different combinations of duty cycle and phase shift angle can achieve the same output power, leading to distinct root mean square (RMS) resonant currents and affecting ZVS operation. An efficiency optimization strategy based APS control was then proposed to deliver a specific output power with minimized RMS resonant current while maintain ZVS. As such, the efficiency of the converter is improved in a wide load variation range. The theoretical analysis and the validity of the proposed method has been verified by the results of simulation and a 1.9kW prototype.
[1] Nagen V D H, Bhat A K S. A fixed-frequency LCL-type series resonant converter with capacitive output filter using a modified gating scheme[J]. IEEE Transactions on Industry Applications, 2013, 50(6): 4056-4064. [2] Aboushady A A, Ahmed K H, Finney S J, et al. Linearized large signal modeling, analysis, and control design of phase controlled series-parallel resonant converters using state feedback[J]. IEEE Transactions on Power Electronics, 2013, 28(8): 3896-3911. [3] 陈启超, 纪延超, 王建赜, 等. MOSFET输出电容对CLLLC谐振变换器特性影响分析[J]. 电工技术学报, 2015, 30(17): 26-35. Chen Qichao, Ji Yanchao, Wang Jianze, et al. Analysis of the influence of MOSFET output capacitance on the bidirectional CLLLC resonant converter[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 26-35. [4] 沈豫, 林国庆. 无极灯用LCCL谐振变换器特性分析与研究[J]. 电工技术学报, 2015, 30(3): 140-147. Shen Yu, Lin Guoqing. Analysis and research of LCCL resonant converter for electrodeless lamps[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 140-147. [5] 刘军, 郭瑭瑭, 常磊, 等. 高压变压器寄生电容对串联谐振变换器特性的影响[J]. 中国电机工程学报, 2012, 32(15): 16-23. Liu Jun, Guo Tangtang, Chang Lei, et al. Effect of the parasitic capacitance on characteristics of series resonant converters[J]. Proceedings of the CSEE, 2012, 32(15): 16-23. [6] 陈武, 吴小刚, 蒋玮, 等. 一种适用于新能源并网的谐振升压变换器[J]. 电工技术学报, 2016, 31(8): 27-33. Chen Wu, Wu Xiaogang, Jiang Wei, et al. A step-up resonant converter for grid-connected renewable energy sources[J]. Transactions of China Electro- technical Society, 2016, 31(8): 27-33. [7] 高铁峰, 张森, 朱朱, 等. 自持移相LCC谐振变换器稳态分析与参数设计[J]. 电力自动化设备, 2016, 36(8): 122-129. Gao Tiefeng, Zhang Sen, Zhu Zhu, et al. Steady-state analysis and parameter design of SSPSM-LCC resonant converter[J]. Electric Power Automation Equipment, 2016, 36(8): 122-129. [8] Ahn S H, Ryoo H J, Gong J W, et al. Low-ripple and high-precision high-voltage DC power supply for pulsed power applications[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 3023-3033. [9] Casanueva R, Brañas C, Azcondo F J, et al. Teaching resonant converters: properties and applications for variable loads[J]. IEEE Transactions on Industrial Electronics, 2010, 57(10): 3355-3363. [10] Shafiei N, Pahlevaninezhad M, Farzanefard H, et al. Analysis of a fifth-order resonant converter for high- voltage DC power supplies[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 85-100. [11] 张治国, 谢运祥, 袁兆梅. LCC谐振变换器的电路特性分析[J]. 电工技术学报, 2013, 28(4): 50-57. Zhang Zhiguo, Xie Yunxiang, Yuan Zhaomei. Analysis of circuit characteristics of LCC resonant converter[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 50-57. [12] Scandola L, Corradini L, Spiazzi G, et al. Online efficiency optimization technique for digitally controlled resonant DC/DC converters[C]//IEEE Applied Power Electronics Conference & Exposition, Fort Worth, 2014: 27-34. [13] Ryu S, Kim D H, Kim M J. Adjustable frequency- duty-cycle hybrid control strategy for full-bridge series resonant converters in electric vehicle chargers[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5354-5362. [14] Bhat A K S. Fixed frequency PWM series-parallel resonant converter[J]. IEEE Transactions on Industry Applications, 1992, 28(5): 1002-1009. [15] Czarkowski D, Kazimierczuk M K. Phase-controlled series-parallel resonant converter[J]. IEEE Transa- ctions on Power Electronics, 1993, 8(3): 309-319. [16] Burdío J M, Canales F, Barbosa P M, et al. A comparison study of fixed-frequency control strategies for ZVS DC/DC series resonant converters[C]//IEEE Power Electronics Specialists Conference, Vancouver, 2001: 427-432. [17] Burdío J M, Barragán L A, Monterde F, et al. Asymmetrical voltage-cancellation control for full- bridge series resonant inverters[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 461-469. [18] Corradini L, Seltzer D, Bloomquist D, et al. Minimum current operation of bi-directional dual- bridge series resonant DC/DC converters[J]. IEEE Transactions on Power Electronics, 2012, 27(7): 3266-3276.