Abstract:The study of simulation aiming at the current-zero periods of plasma is significant for guiding the research and design of the circuit breaker, improving its switching capacity and understanding the development process of the current-zero periods of plasma. Since the development process of the current-zero periods of plasma is coupled with the collective effects of flow, heat and electromagnetic fields, descriptions of that process are still difficult for related study. Because of the particularity of arc’s dynamic activities during the current-zero periods, LTE hypothesis which is put forward in the former study is not applicable during the period, and there exists some deviation between the predicted arc activities and reality. Recently theoretical research based on thermodynamics and chemically non-equilibrium hypothesis demonstrates better coherency, arousing a general interest among the simulations during the current-zero periods. This essay introduces the development of the simulation, modeling and experiments on the arc plasmas based on thermodynamics and chemically non-equilibrium hypothesis respectively. Appropriate conclusions on arc plasma during the current-zero periods were drawn and future work was suggested.
荣命哲, 吴翊, 杨飞, 孙昊, 纽春萍, 段嘉炜. 开关电弧电流零区非平衡态等离子体仿真研究现状[J]. 电工技术学报, 2017, 32(2): 1-12.
Rong Mingzhe, Wu Yi, Yang Fei, Sun Hao, Niu Chunping, Duan Jiawei. Review on the Simulation Method of Non-Equilibrium Arc Plasma During Current Zero Period in the Circuit Breaker. Transactions of China Electrotechnical Society, 2017, 32(2): 1-12.
[1] Capitelli M, Colonna G, D'Angola A. Fundamental aspects of plasma chemical physics: thermo- dynamics[M]. New York: Springer-Verlag, 2011. [2] Capitelli M, Bruno D, Laricchiuta A. Fundamental aspects of plasma chemical physics: transport[M]. New York: Springer-Verlag, 2013. [3] Chapman S, Cowling T G, Park D. The mathematical theory of non-uniform gases[J]. American Journal of Physics, 1962, 30(5): 389. [4] Hirschfelder J O, Curtiss C F, Bird R B. Molecular theory of gases and liquids[M]. New York: Wiley, 1954. [5] Potapov A. Chemical equilibrium of multitemper- ature systems (law of mass action derivation of chemical equilibrium ionization of multitemperature system when electron and heavy particle temperature differ)[J]. Teplofizika Vysokikh Temperatur, 1966(4): 55-58. [6] Vandesanden M C M, Schram P, Peeters A G, et al. Thermodynamic generalization of the saha equation for a 2-temperature plasma[J]. Physical Review A, 1989, 40(9): 5273-5276. [7] Andre P. Partition-functions and concentrations in plasmas out of thermal-equilibrium[J]. IEEE Transa- ctions on Plasma Science, 1995, 23(3): 453-458. [8] Andre P, Abbaoui M, Lefort A, et al. Numerical method and composition in multi-temperature plasmas: application to an Ar-H2 mixture[J]. Plasma Chemi- stry and Plasma Processing, 1996, 16(3): 379-398. [9] Chen X, Han P. On the thermodynamic derivation of the Saha equation modified to a two-temperature plasma[J]. Journal of Physics D: Applied Physics, 1999, 32(14): 1711-1718. [10] Gleizes A, Chervy B, Gonzalez J J. Calculation of a two-temperature plasma composition: bases and application to SF 6 [J]. Journal of Physics D: Applied Physics, 1999, 32(16): 2060-2067. [11] Devoto R S. Transport properties of ionized monatomic gases[J]. Physics of Fluids, 1966, 9(6): 1230-1240. [12] Devoto R S. Simplified expressions for transport properties of ionized monatomic gases[J]. Physics of Fluids, 1967, 10(10): 2105-2112. [13] Devoto R S. Transport coefficients of partially ionized argon[J]. Physics of Fluids, 1967, 10(2): 354-364. [14] Rat V, Murphy A B, Aubreton J, et al. Treatment of non-equilibrium phenomena in thermal plasma flows[J]. Journal of Physics D: Applied Physics, 2008, 41(18): 183001. [15] Colombo V, Ghedini E, Sanibondi P. Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas[J]. Progress in Nuclear Energy, 2008, 50(8): 921-933. [16] Ghorui S, Heberlein J V R, Pfender E. Thermo- dynamic and transport properties of two-temperature nitrogen-oxygen plasma[J]. Plasma Chemistry and Plasma Processing, 2008, 28(4): 553-582. [17] Murphy A B. Combined diffusion-coefficients in equilibrium mixtures of dissociating gases[J]. Journal of Chemical Physics, 1993, 99(2): 1340-1343. [18] Murphy A B. Diffusion in equilibrium mixtures of ionized-gases[J]. Physical Review E, 1993, 8(5): 3594-3603. [19] Cressault Y, Gleizes A. Calculation of diffusion coefficients in air-metal thermal plasmas[J]. Journal of Physics D: Applied Physics, 2010, 43(43): 434006. [20] Zhong L, Wang X, Rong M, et al. Calculation of combined diffusion coefficients in SF 6 -Cu mixtures[J]. Physics of Plasmas (1994-present), 2014, 21(10): 103506. [21] Zhang X N, Murphy A B, Li H P, et al. Combined diffusion coefficients for a mixture of three ionized gases[J]. Plasma Sources Science & Technology, 2014, 23(6): 065044. [22] Gleizes A, Razafinimanana M, Vacquie S. Transport- coefficients in arc plasma of SF 6 -N 2 mixtures[J]. Journal of Applied Physics, 1983, 54(7): 3777-3787. [23] Gleizes A, Razafinimanana M, Vacquie S. Calcu- lation of thermodynamic properties and transport- coefficients for SF 6 -N 2 mixtures in the temperature- range 1,000-30,000K[J]. Plasma Chemistry and Plasma Processing, 1986, 6(1): 65-78. [24] Chervy B, Gleizes A, Razafinimanana M. Thermo- dynamic properties and transport-coefficients in SF 6 -Cu mixtures at temperatures of 300-30000 K AND pressures of 0.1-1 MPa[J]. Journal of Physics D: Applied Physics, 1994, 27(6): 1193-1206. [25] Chervy B, Gleizes A. Electrical conductivity in SF 6 thermal plasma at low temperature (1000-5000K)[J]. Journal of Physics D: Applied Physics, 1998, 31(19): 2557-2565. [26] Cressault Y, Hannachi R, Teulet P, et al. Influence of metallic vapours on the properties of air thermal plasmas[J]. Plasma Sources Science & Technology, 2008, 17(3): 035016. [27] Cressault Y, Teulet P, Gleizes A. Thermal plasmas properties in gas or gas-vapour mixtures[C]//Pro- ceedings of the 2008 17th International Conference on Gas Discharges and Their Applications (GD 2009), 2009: 149-152. [28] Cressault Y, Connord V, Hingana H, et al. Transport properties of CF 3 I thermal plasmas mixed with CO 2 , air or N 2 as an alternative to SF 6 plasmas in high-voltage circuit breakers[J]. Journal of Physics D: Applied Physics, 2011, 44(49): 495202. [29] Cressault Y, Gleizes A, Riquel G. Properties of air-aluminum thermal plasmas[J]. Journal of Physics D: Applied Physics, 2012, 45(26): 265202. [30] Laricchiuta A, Colonna G, Bruno D, et al. Classical transport collision integrals for a Lennard-Jones like phenomenological model potential[J]. Chemical Physics Letters, 2007, 445(4-6): 133-139. [31] Capitelli M, Cappelletti D, Colonna G, et al. On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres[J]. Chemical Physics, 2007, 338(1): 62-68. [32] Lombardi A, Palazzetti F. A comparison of inter- atomic potentials for rare gas nanoaggregates[J]. Journal of Molecular Structure-Theochem, 2008, 852(1-3): 22-29. [33] Wang W, Rong M, Yan J D, et al. The reactive thermal conductivity of thermal equilibrium and nonequilibrium plasmas: application to nitrogen[J]. IEEE Transactions on Plasma Science, 2012, 40(4): 980-989. [34] Wang W Z, Rong M, Yang F, et al. Transport coefficients of high temperature SF 6 in local thermody- namic equilibrium using a phenomenological approach[J]. Chinese Physics Letters, 2014, 31(3): 035202. [35] Wang Weizong, Rong M, Wu Y. Transport coefficients of high temperature SF 6 -He mixtures used in switching applications as an alternative to pure SF 6 [J]. Plasma Chemistry and Plasma Processing, 2014, 34(4): 899-916. [36] Wu Y, Chen Z, Cressault Y, et al. Two-temperature thermodynamic and transport properties of SF 6 -Cu plasmas[J]. Journal of Physics D: Applied Physics, 2015, 48(41): 415205. [37] Yang F, Chen Z, Wu Y, et al. Two-temperature transport coefficients of SF 6 -N 2 plasma[J]. Physics of Plasmas (1994-present), 2015, 22(10): 103508. [38] Fang M, Zhuang Q. Current zero behaviour of an SF 6 gas-blast arc. I. laminar flow[J]. Journal of Physics D: Applied Physics, 1992, 25(8): 1197. [39] Fang M, Zhuang Q, Guo X. Current-zero behaviour of an SF 6 gas-blast arc. II. Turbulent flow[J]. Journal of Physics D: Applied Physics, 1994, 27(1): 74. [40] Snyder S, Lassahn G, Reynolds L. Direct evidence of departure from local thermodynamic equilibrium in a free-burning arc-discharge plasma[J]. Physical Review E, 1993, 48(5): 4124. [41] 王伟宗, 荣命哲, 吴翊, 等. 高压断路器SF 6 电弧电流零区动态特征和衰减行为的研究综述[J]. 中国电机工程学报, 2015, 35(8): 2059-2072. Wang Weizong, Rong Mingzhe, Wu Yi, et al. Investigation of the dynamic characteristics and decaying behavior of SF 6 arcs in high voltage circuit breakers during current-zero period: a review[J]. Proceedings of the CSEE, 2015, 35(8): 2059-2072. [42] Hsu K, Pfender E. Two-temperature modeling of the free-burning, high-intensity arc[J]. Journal of Applied Physics, 1983, 54(8): 4359-4366. [43] Trelles J, Heberlein J, Pfender E. Non-equilibrium modelling of arc plasma torches[J]. Journal of Physics D: Applied Physics, 2007, 40(19): 5937. [44] Trelles J, Chazelas C, Vardelle A, et al. Arc plasma torch modeling[J]. Journal of Thermal Spray Tech- nology, 2009, 18(5-6): 728-752. [45] Megli T W, Krier H, Burton R L. Plasmadynamics model for nonequilibrium processes in N 2 /H 2 arcjets[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(4): 554-562. [46] 孙维平, 魏福智, 王海兴. 10kW级氢电弧加热发动机非平衡等离子体流动过程的数值模拟[J]. 高电压技术, 2013, 39(7): 1614-1620. Sun Weiping, Wei Fuzhi, Wang Haixing. Numerical simulation of nonequilibrium plasma flow in 10kW hydrogen arc jets[J]. High Voltage Engineering, 2013, 39(7): 1614-1620. [47] Freton P, Gonzalez J, Ranarijaona Z, et al. Energy equation formulations for two-temperature modelling of ‘thermal’ plasmas[J]. Journal of Physics D: Applied Physics, 2012, 45(46): 465206. [48] Li H P, Benilov M. Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas[J]. Journal of Physics D: Applied Physics, 2007, 40(7): 2010. [49] Benilov M. Understanding and modelling plasma- electrode interaction in high-pressure arc discharges: a review[J]. Journal of Physics D: Applied Physics, 2008, 41(14): 144001. [50] Baeva M, Uhrlandt D, Benilov M, et al. Comparing two non-equilibrium approaches to modelling of a free-burning arc[J]. Plasma Sources Science and Technology, 2013, 22(6): 065017. [51] Girard R, Belhaouari J B, Gonzalez J J, et al. Two-temperature study of a decaying SF 6 arc plasma[J]. Centre de Physique des Plasmas ET de Leurs Applications de Toulouse, 2001. [52] Girard R, Belhaouari J, Gonzalez J, et al. A two- temperature kinetic model of SF 6 plasma[J]. Journal of Physics D: Applied Physics, 1999, 32(22): 2890. [53] Gonzalez J, Girard R, Gleizes A. Decay and post-arc phases of a SF 6 arc plasma: a thermal and chemical non-equilibrium model[J]. Journal of Physics D: Applied Physics, 2000, 33(21): 2759. [54] Tanaka Y, Suzuki K, Iijima T, et al. Development of a thermally and chemically non-equilibrium model for decaying SF 6 arc plasmas[C]//2013 2nd Inter- national Conference on IEEE Electric Power Equipment-Switching Technology (ICEPE-ST), Matsue, 2013: 1-4. [55] Wang W, Yan J D, Rong M, et al. Theoretical investigation of the decay of an SF 6 gas-blast arc using a two-temperature hydrodynamic model[J]. Journal of Physics D: Applied Physics, 2013, 46(6): 065203. [56] Tanaka Y, Suzuki K. Development of a chemically nonequilibrium model on decaying SF arc plasmas[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2623-2629. [57] Murphy A B. Thermal plasmas in gas mixtures[J]. Journal of Physics D: Applied Physics, 2001, 34(20): R151-R173. [58] Gonzalez J J, Girard R, Gleizes A. Decay and post-arc phases of a SF 6 arc plasma: a thermal and chemical non-equilibrium model[J]. Journal of Physics D: Applied Physics, 2000, 33(21): 2759-2768. [59] Teulet P H, Gonzalez J J, Mercado-Cabrera A, et al. One-dimensional hydro-kinetic modelling of the decaying arc in air-PA66-copper mixtures: I. chemical kinetics, thermodynamics, transport and radiative properties[J]. Journal of Physics D: Applied Physics , 2009, 42(17): 175201(15). [60] Teulet P H, Gonzalez J J, Mercado-Cabrera A, et al. One-dimensional hydro-kinetic modelling of the decaying arc in air-PA66-copper mixtures: II. study of the interruption ability[J]. Journal of Physics D: Applied Physics, 2009, 42(18): 185207. [61] Belhaouari J B, Gonzalez J J, Gleizes A. Simulation of a decaying SF 6 arc plasma: hydrodynamic and kinetic coupling study[J]. Journal of Physics D: Applied Physics, 1998, 31(10): 1219-1232. [62] Gleizes A, Gonzalez J J, Freton P. Thermal plasma modelling[J]. Journal of Physics D: Applied Physics, 2005, 38(9): R153-R183. [63] Yasunori Tanaka, Michishita T, Uesugi Y. Hydrody- namic chemical non-equilibrium model of a pulsed arc discharge in dry air at atmospheric pressure[J]. Plasma Sources Science and Technology, 2005, 14(1): 134-151. [64] Kentaro Tomita, Daisuke Gojima, Kazuhiko Nagai, et al. Thomson scattering diagnostics of decay pro- cesses of Ar/SF 6 gas-blast arcs confined by a nozzle[J]. Journal of Physics D: Applied Physics, 2013, 46(38): 382001. [65] Yuki Inada, Shigeyasu Matsuoka, Akiko Kumada, et al. Highly sensitive Shack-Hartmann sensor for two- dimensional electron density imaging over extingui- shing arc discharges[J]. Measurement Science & Technology, 2014, 25(5): 055201(8) [66] Sun Hao, Tanaka Yasunori, Tomita Kentaro, et al. Computational non-chemically equilibrium model on the current zero simulation in a model N 2 circuit breaker under the free recovery condition[J]. Journal of Physics D: Applied Physics, 2016, 49(5): 055204 (17).