Discrete State Event Driven Based Methods for Transient Simulation of Power Electronic Converters
Tan Tian, Zhao Zhengming, Li Boyang, Lin Yatao, Chen Kainan
State Key Laboratory of Control and Simulation of Power Systems and Generation Equipments Department of Electrical Engineering Tsinghua University Beijing 100084 China
Abstract:In order to calculate electromagnetic transients of power electronic systems, non-ideal physical models considering stray parameters of circuits and time delay of control loops are needed for semiconductor switching device. In this case, the mathematical models describing power electronic system exhibit high-order nonlinearity and tend to be highly rigid. The numerical solution methods through the conventional differential equations shall bring about the problems of long simulation time and poor numerical stability. Thus, this paper puts forward the improved methods for transient simulation of power electronic converters based on discrete state event driven (DSED) methods. These methods use the variation of state variable as the calculation basis rather than the variation of simulation time. It is demonstrated the methods could reduce simulation time effectively and solve the stiff problem of ordinary differential equations, which ensure numerically stable of the simulation.
檀添, 赵争鸣, 李帛洋, 凌亚涛, 陈凯楠. 基于离散状态事件驱动的电力电子瞬态过程仿真方法[J]. 电工技术学报, 2017, 32(13): 41-50.
Tan Tian, Zhao Zhengming, Li Boyang, Lin Yatao, Chen Kainan. Discrete State Event Driven Based Methods for Transient Simulation of Power Electronic Converters. Transactions of China Electrotechnical Society, 2017, 32(13): 41-50.
[1] 鲁挺. 大容量电力电子系统非理想功率脉冲特性及其控制方法[D]. 北京: 清华大学, 2010. [2] 赵争鸣, 贺凡波, 袁立强, 等. 大容量电力电子系统电磁瞬态分析技术及应用[J]. 中国电机工程学报, 2014, 34(18): 3013-3019. Zhao Zhengming, He Fanbo, Yuan Liqiang, et al. Techniques and applications of electromagnetic transient analysis in high power electronic systems[J]. Proceedings of the CSEE, 2014, 34(18): 3013-3019. [3] Ji S, Lu T, Zhao Z, et al. Modelling of high voltage IGBT with easy parameter extraction[C]//IEEE Power Electronics and Motion Control Conference, Harbin, China, 2012: 1511-1515. [4] Ji S, Zhao Z, Yuan L. HVIGBT physical model analysis during transient[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2616-2624. [5] 刘军锋, 李叶松. 死区对电压型逆变器输出误差的影响及其补偿[J]. 电工技术学报, 2007, 22(5): 117-122. Liu Junfeng, Li Yesong. Dead-time influence on output error of voltage source inverter and com- pensation[J]. Transactions of China Electrotechnical Society, 2007, 22(5): 117-122. [6] 白华, 赵争鸣, 张永昌, 等. 最小脉宽特性对高压三电平变频器的影响[J]. 电工技术学报, 2006, 21(12): 60-65. Bai Hua, Zhao Zhengming, Zhang Yongchang, et al. Effect of minimum pulse width on high voltage three-level inverters[J]. Transactions of China Electrotechnical Society, 2006, 21(12): 60-65. [7] 李锃. 大功率多电平逆变器寄生参数对电路性能影响和抑制的分析与研究[D]. 杭州: 浙江大学, 2008. [8] 于华龙, 赵争鸣, 袁立强, 等. 高压IGBT串联变换器直流母排设计与杂散参数分析[J]. 清华大学学报: 自然科学版, 2014, 54(4): 540-545. Yu Hualong, Zhao Zhengming, Yuan Liqiang, et al. High-voltage IGBTs series converter bus bar design and stray parameter analysis[J]. Journal of Tsinghua University: Science and Technology, 2014, 54(4): 540-545. [9] 赵争鸣, 白华, 袁立强. 电力电子学中的脉冲功率瞬态过程及其序列[J]. 中国科学: 技术科学, 2007, 37(1): 60-69. Zhao Zhengming, Bai Hua, Yuan Liqiang. Transient process and sequence of power pulse in power elec- tronics[J]. Science China Technological Sciences, 2007, 37(1): 60-69. [10] 陈建业. 电力电子电路的计算机仿真[M]. 北京: 清华大学出版社, 2008. [11] Hairer E, Wanner G. Solving ordinary differential equations II: stiff and differential-algebraic pro- blems[J]. Springer Series in Computational Mathematics, 1996, 8(3): 611-614. [12] Shampine L F, Reichelt M W. The MATLAB ODE Suite[J]. Siam Journal on Scientific Computing, 1997, 18(1): 1-22. [13] Cellier F E, Kofman E. Continuous system simulation[M]. New York, US: Springer, 2010. [14] Migoni G, Kofman E, Cellier F. Quantization-based new integration methods for stiff ordinary differential equations[J]. Simulation Modelling Practice & Theory, 2012, 35(4): 387-407. [15] Migoni, Kofman G E. Linearly implicit discrete event methods for stiff ODE's[J]. Latin American Applied Research Pesquisa Aplicada Latino Americana Investigacio?n Aplicada Latinoamericana, 2009, 39(39): 245-254. [16] Migoni G, Bortolotto M, Kofman E, et al. Linearly implicit quantization-based integration methods for stiff ordinary differential equations[J]. Simulation Modelling Practice & Theory, 2013, 35(6): 118-136. [17] Migoni G, Kofman E, Bergero F, et al. Quantization- based simulation of switched mode power supplies[J]. Simulation Transactions of the Society for Modeling & Simulation International, 2015, 91(4): 320-336. [18] Song X, Ma Y, Zhang W, et al. Quantized state based simulation of time invariant and time varying continuous systems[J]. Mathematical Problems in Engineering, 2015, 2015: 1-5. [19] 袁立强, 赵争鸣, 宋高升, 等. 电力半导体器件原理与应用[M]. 北京: 机械工业出版社, 2011. [20] Brenan K E, Campbell S L, Petzold L R. Numerical solution of initial-value problems in differential- algebraic equations[M]. New York: North-Holland, 1989. [21] 费景高. 微分代数方程的一类并行算法[J]. 计算机工程与科学, 1992, 14(4): 55-68. Fei Jinggao. A class of parallel algorithms for differ- ential algebraic equations[J]. Computer Engineering & Science, 1992, 14(4): 55-68.