Review on the Breakdown Characteristics and Discharge Behaviors at the Micro & Nano Scale
Cheng Yonghong1, Meng Guodong2, 3, Dong Chengye1
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China ; 2. School of Electrical Engineering Xi’an Jiaotong University Xi’an 710049 China; 3. Department of Nuclear Science and Engineering Massachusetts Institute of Technology Cambridge 02139 USA
Abstract:The research on breakdown characteristics and discharge behaviors is gaining attention nowadays. In this paper, the research progress and achievement on this field for nearly 70 years have been reviewed, emphasizing on the experimental technologies, discharge behaviors and physical mechanisms of dielectric systems at various dimensions (the macroscale electrodes with microscale gaps, the microscale electrodes with micro- and sub-microscale gaps and the nanoscale electrodes with nano- and sub-nanoscale gaps). The influences of gap separations, gas pressure, electrode material, electrode shape on breakdown characteristics were summarized. Besides, the discharge behaviors of various dielectric systems were discussed. As a consequence, the review of breakdown characteristics and discharge behaviors at the micro & nano scale is beneficial to recognizing the critical problems and making suggestions for the future research, which could be of great importance to the electrical breakdown theory at the micro & nano scale.
[1] Bajenescu T M I. Grand challenges and relevant failure mechanisms of nanoelectronic devices[J]. Electrotehnica, Electronica, Automatica, 2014, 62(2): 39-44. [2] Voldman S H. Electrical overstress (EOS): devices, circuits and systems[M]. Hoboken: John Wiley & Sons, 2013. [3] Muranaka T, Blom T, Leifer K, et al. In-situ experiments of vacuum discharge using scanning electron microscopes[C]//European Coordination for Accelerator Research and Development CON, 2011: 22. [4] 周兆英, 杨兴. 微/纳机电系统[J]. 仪表技术与传感器, 2003, 2(1): 1-5. Zhou Zhaoying, Yang Xing. Micro and nano electro-mechanic systems[J]. Instrument Technique and Sensor, 2003, 2(1): 1-5. [5] Ionescu-Zanetti C, Nevill J T, Di Carlo D, et al. Nanogap capacitors: Sensitivity to sample permitti- vity changes[J]. Journal of Applied Physics, 2006, 99(2): 024305. [6] Knox A, Mykhaylova N, Evans G J, et al. The expanding scope of air pollution monitoring can facilitate sustainable development[J]. Science of the Total Environment, 2013, 448(SI): 189-196. [7] O’mahony C, Olszewski O, Hill R, et al. Reliability assessment of MEMS switches for space applications: laboratory and launch testing[J]. Journal of Micromechanics and Microengineering, 2014, 24(12): 125009. [8] Evans P R, Zhu X, Baxter P, et al. Toward self-assembled ferroelectric random access memories: Hard-wired switching capacitor arrays with almost Tb/in. 2 densities[J]. Nano Letters, 2007, 7(5): 1134-1137. [9] Howe R T. Vacuum microsystems for energy conversion and other applications[C]//16th Inter- national Solid-State Sensors Actuators and Micro- systems Conference, Beijing, China, 2011: 7-11. [10] Sangameswaran S, De Coster J, Cherman V, et al. Behavior of RF MEMS switches under ESD stress[C]//32nd Annual Electrical Overstress/ Electrostatic Discharge Symposium (EOS/ESD), Reno, USA, 2010: 1-8. [11] Boyle W, Kisliuk P. Departure from Paschen's law of breakdown in gases[J]. Physical Review, 1955, 97(2): 255-259. [12] Germer L H. Electrical breakdown between close electrodes in air[J]. Journal of Applied Physics, 1959, 30(1): 46-51. [13] Ono T, Sim D Y, Esashi M. Micro-discharge and electric breakdown in a micro-gap[J]. Journal of Micromechanics and Microengineering, 2000, 10(3): 445-451. [14] Wallash A, Levit L. Electrical breakdown and ESD phenomena for devices with nanometer-to-micron gaps[C]//Pro. SPIE, Reliability, Testing, and Chara- cterization of MEMS/MOEMS II, San Jose, USA, 2003, 4980: 87-96. [15] Jia C, Guo X. Molecule-electrode interfaces in molecular electronic devices[J]. Chemical Society Reviews, 2013, 42(13): 5642-5660. [16] Uman M A. The lightning discharge[M]. New York: Dover Publications, 2001. [17] Raizer Y P, Allen J E. Gas discharge physics[M]. Berlin: Springer, 1997. [18] Paschen F. On sparking over in air, hydrogen, carbon dioxide under the potentials corresponding to various pressures[J]. Wiedemann Annalen der Physik und Chemie, 1889, 37: 69-96. [19] Townsend J, Tizard H. The motion of electrons in gases[J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1913, 88(604): 336-347. [20] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996. [21] Jones T B. Electrical breakdown limits for MEMS[M]. Rochester: University of Rochester, 2010. [22] Charbonnier F M, Bennette C J, Swanson L W. Electrical breakdown between metal electrodes in high vacuum I. Theory[J]. Journal of Applied Physics, 1967, 38(2): 627-633. [23] Utsumi T. Cathode- and Anode- Induced Electrical Breakdown in Vacuum[J]. Journal of Applied Physics, 1967, 38(7): 2989-2997. [24] Chatterton P A. Theoretical study of field emission initiated vacuum breakdown[J]. Proceedings of the Physical Society, 1966, 88(1): 231-245. [25] Ilic D, Stankovic K, Vujisic M, et al. Avalanche mechanism of vacuum breakdown[J]. Radiation Effects and Defects in Solids, 2011, 166(2): 137-149. [26] Fowler R H, Nordheim L. Electron emission in intense electric fields[J]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1928, 119(781): 173-181. [27] Bennette C J, Swanson L W, Charbonnier F M. Electrical breakdown between metal electrodes in high vacuum. II: Experimental[J]. Journal of Applied Physics, 1967, 38(2): 634-640. [28] 荣命哲, 杨飞, 吴翊, 等. 直流断路器电弧研究的新进展[J]. 电工技术学报, 2014, 29(1): 1-9. Rong Mingzhe, Yang Fei, Wu Yi, et al. New developments in switching arc research in DC circuit breaker[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 1-9. [29] 詹花茂, 刘波, 颜廷利, 等. 操作冲击下空间电荷对间隙放电的影响[J]. 电工技术学报, 2014, 29(2): 212-218. Zhan Huamao, Liu Bo, Yan Tingli, et al. Influence of space charge on air gap discharge under switching impulse[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 212-218. [30] 李静, 曹云东, 侯春光, 等. 交流电弧微观动态形成机理及影响因素[J]. 电工技术学报, 2015, 30(17): 45-54. Li Jing, Cao Yundong, Hou Chunguang, et al. Microscopic dynamic formation mechanism and influencing factors of AC vacuum arc[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(17): 45-54. [31] Radmilović-Radjenović M, Lee J K, Iza F, et al Particle-in-cell simulation of gas breakdown in microgaps[J]. Journal of Physics D: Applied Physics, 2005, 38(6): 950-954. [32] Torres J M, Dhariwal R S. Electric field breakdown at micrometer separations in air and vacuum[J]. Microsystem Technologies, 1999, 6(1): 6-10. [33] Ma X Y, Kim J D, Sudarshan T S. High field breakdown characteristics of micrometric gaps in vacuum[C]//1997 10th International Vacuum Micro- electronics Conference, 1997: 725. [34] Lee R T, Chung H H, Chiou Y C. Arc erosion behaviour of silver electric contacts in a single arc discharge across a static gap[J]. IEE Proceedings- Science, Measurement and Technology, 2001, 148(1): 8-14. [35] Torres J M, Dhariwal R S, King P C. Electric field breakdown at micrometre separations in various media[C]//11st International Symposium on High Voltage Engineering, London, UK, 1999, 3: 201-204. [36] Ma X Y, Sudarshan T S. Prebreakdown and breakdown investigation of broad area electrodes in the micrometric regime[J]. Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures), 1998, 16(3): 1174-1179. [37] Slade P G, Taylor E D. Electrical breakdown in atmospheric air between closely spaced (0.2μm-40μm) electrical contacts[J]. IEEE Transactions on Com- ponents and Packaging Technologies, 2002, 25(3): 390-396. [38] Shea H R, Gasparyan A, Chan H B, et al. Effects of electrical leakage currents on MEMS reliability and performance[J]. IEEE Transactions on Device and Materials Reliability, 2004, 4(2): 198-207. [39] Sangameswaran S. Electrostatic discharge (ESD) in micro electro mechanical systems (MEMS): sensiti- vity and protection[D]. Leuven: University of Leuven, 2011. [40] 徐永青, 杨拥军. 硅MEMS器件加工技术及展望[J]. 微纳电子技术, 2010, 47(7): 425-431. Xu Yongqing, Yang Yongjun. Processing technology and development of silicon MEMS[J]. Micronano- Electronic Technology, 2010, 47(7): 425-431. [41] Meng G, Cheng Y, Dong C, et al. Experimental study of electrical breakdown for devices with micrometer gaps[J]. Plasma Science and Technology, 2014, 16(12): 1083-1089. [42] Chen C H, Yeh J A, Wang P J. Electrical breakdown phenomena for devices with micron separations[J]. Journal of Micromechanics and Microengineering, 2006, 16(7): 1366-1373. [43] Strong F W, Skinner J L, Dentinger P M, et al. Electrical breakdown across micron scale gaps in MEMS structures[C]//Proceedings of the SPIE, Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS V, San Jose, USA, 2006: 611103. [44] Iwabuchi H, Morimoto T, Matsuoka S, et al. Pre-breakdown phenomenon in micrometer-scale gap[C]// 31st International Conference on Phenomena in Ionized Gases, Granada, Spain, 2013. [45] Klas M, Matejcik S, Radjenovic B, et al. Experi- mental and theoretical studies of the breakdown voltage characteristics at micrometre separations in air[J]. Europhysics Letters, 2011, 95(3): 35002. [46] Carazzetti P, Shea H R. Electrical breakdown at low pressure for planar microelectromechanical systems with 10μm to 500mm gaps[J]. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2009, 8(3): 031305. [47] Radmilovi-Radjenovic M, Petrovic Z L, Radjenovic B. Modelling of breakdown behavior by PIC/MCC code with improved secondary emission models[J]. Journal of Physics: Conference Series, 2007, 71(1): 012007. [48] Semnani A, Venkattraman A, Alexeenko A A, et al. Pre-breakdown evaluation of gas discharge mecha- nisms in microgaps[J]. Applied Physics Letters, 2013, 102(17): 174102. [49] Go D B, Pohlman D A. A mathematical model of the modified Paschen's curve for breakdown in microscale gaps[J]. Journal of Applied Physics, 2010, 107(10): 103303. [50] Li Y, Tirumala R, Rumbach P, et al. The coupling of ion-enhanced field emission and the discharge during microscale breakdown at moderately high pressures[J]. IEEE Transactions on Plasma Science, 2013, 41(1): 24-35. [51] Rumbach P, Go D B. Fundamental properties of field emission-driven direct current microdischarges[J]. Journal of Applied Physics, 2012, 112(10): 103302. [52] Garg A, Ayyaswamy V, Kovacs A, et al. Direct measurement of field emission current in E-static MEMS structures[C]//24th IEEE International Con- ference on Micro Electro Mechanical Systems (MEMS), Cancun, Mexico, 2011: 412-415. [53] Radmilović-Radjenović M, Radjenović B. Theore- tical study of the electron field emission phenomena in the generation of a micrometer scale discharge[J]. Plasma Sources Science and Technology, 2008, 17(2): 024005. [54] Semnani A, Venkattraman A, Alexeenko A A, et al. Frequency response of atmospheric pressure gas breakdown in micro/nanogaps[J]. Applied Physics Letters, 2013, 103(6): 063102. [55] Rajput N S, Singh A K, Verma H C. Role of the substrate in the electrical transport characteristics of focused ion beam fabricated nanogap electrode[J]. Journal of Applied Physics, 2012, 112(2): 024310. [56] Peschot A, Poulain C, Bonifaci N, et al. Electrical breakdown voltage in micro- and submicrometer contact gaps (100nm-10μm) in air and nitrogen[C]// 61st IEEE Holm Conference on Electrical Contacts, San Diego, CA, 2015: 280-286. [57] Bhattacharjee S, Chowdhury T. Experimental investigation of transition from Fowler-Nordheim field emission to space-charge-limited flows in a nanogap[J]. Applied Physics Letters, 2009, 95(6): 061501. [58] Meng G, Cheng Y, Wu K, et al. Electrical characteristics of nanometer gaps in vacuum under direct voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(4): 1950-1956. [59] Hirata Y, Ozaki K, Ikeda U, et al. Field emission current and vacuum breakdown by a pointed cathode[J]. Thin Solid Films, 2007, 515(9): 4247-4250. [60] Lyon D, Hubler A. Gap size dependence of the dielectric strength in nano vacuum gaps[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1467-1471.