Predictive Current Control for Permanent Magnet Synchronous Motor Based on Disturbance Observer
Yi Boyu1,2, Kang Longyun2, Feng Zicheng2, Huang Zhizhen2
1. Shanghai Centem Automobile Electronics Company Limited Shanghai 210210 China; 2. School of Electric Power South China University of Technology Guangzhou 510640 China
Abstract:Based on the discrete mathematical model of surface-mounted permanent magnet synchronous motors (SMPMSM), a predictive current control (PCC) scheme using dead-beat algorithm is proposed. To compensate the loss of current control precision influenced by model error and voltage-source inverter dead-time, two parallel disturbance observers are designed to estimate model uncertainty and the disturbance voltage, and their stability is proved. Experimental results show that, PCC improves dynamic performance of current loop, and disturbance observers can compensate the adverse effects of parameter variations and dead-time to make PCC more robust and have low current harmonics.
易伯瑜, 康龙云, 冯自成, 黄志臻. 基于扰动观测器的永磁同步电机预测电流控制[J]. 电工技术学报, 2016, 31(18): 37-45.
Yi Boyu, Kang Longyun, Feng Zicheng, Huang Zhizhen. Predictive Current Control for Permanent Magnet Synchronous Motor Based on Disturbance Observer. Transactions of China Electrotechnical Society, 2016, 31(18): 37-45.
[1] 邱鑫, 黄文新, 卜飞飞, 等. 电动汽车用IPMSM直接转矩控制系统效率优化[J]. 电工技术学报, 2015, 30(22): 42-48. Qiu Xin, Huang Wenxin, Bu Feifei, et al. Efficiency optimization of IPMSM direct torque control system used in electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 42-48. [2] 郭新华, 王永兴, 赵峰, 等. 基于SHEPWM的中压大功率牵引永磁同步电机两电平控制[J]. 电工技术学报, 2012, 27(11): 76-82. Guo Xinhua, Wang Yongxing, Zhao Feng, et al. Two level control technology of PMSM used in medium voltage high power traction system based on SHEPWM[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 76-82. [3] Mardaneh M, Bavafa F, Alavi S M S, et al. Nonlinear PI controller for interior permanent magnet synchronous motor drive[C]//2nd International Conference on Control Instrumentation and Automation, Bandung, Shiraz, 2011: 225-230. [4] Sant A V, Rajagopal K R, Sheth N K. Permanent magnet synchronous motor drive using hybrid PI speed controller with inherent and noninherent switching functions[J]. IEEE Transactions on Magne- tics, 2011, 47(10): 4088-4091. [5] Preindl M, Bolognani S. Model predictive direct speed control with finite control set of PMSM drive systems[J]. IEEE Transactions on Power Electronics, 2013, 28(2): 1007-1015. [6] Moon H T, Kim H S, Youn M J. A discrete-time predictive current control for PMSM[J]. IEEE Transactions on Power Electronics, 2003, 18(1): 464-472. [7] Morel F, Lin-Shi X, Rétif J M, et al. A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2715-2728. [8] Barrero F, Arahal M R, Gregor R, et al. One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1974-1983. [9] 张杰, 柴建云, 孙旭东, 等. 双三相异步电机电流预测控制算法[J]. 电工技术学报, 2015, 30(9): 12-21. Zhang Jie, Chai Jianyun, Sun Xudong, et al. Predictive current control method for dual three phase induction machine[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 12-21. [10] 王宏佳, 徐殿国, 杨明. 永磁同步电机改进无差拍电流预测控制[J]. 电工技术学报, 2011, 26(6): 39-45. Wang Hongjia, Xu Dianguo, Yang Ming. Improved deadbeat predictive current control strategy of permanent magnet motor drives[J]. Transactions of China Electrotechnical Society, 2011, 26(6): 39-45. [11] Le-Huy H, Slimani K, Viarouge P. Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives[J]. IEEE Transactions on Industrial Elec- tronics, 1994, 41(1): 110-117. [12] Yim D H, Park B G, Kim R Y, et al. A predictive current control associated to EKF for high perfor- mance IPMSM drives[C]//26th Annual IEEE Applied Power Electronics Conference and Exposition, Fort Worth, Fort Worth, TX, 2011: 1010-1016. [13] Sepe R B, Lang J H. Inverter nonlinearities and discrete-time vector current control[J]. IEEE Transa- ctions on Industry Applications, 1994, 30(1): 62-70. [14] Park D M, Kim K H. Parameter-independent online compensation scheme for dead time and inverter nonlinearity in IPMSM drive through waveform analysis[J]. IEEE Transactions on Industrial Elec- tronics, 2014, 61(2): 701-707. [15] Patel P J, Patel V, Tekwani P N. Pulse-based dead-time compensation method for self-balancing space vector pulse width-modulated scheme used in a three-level inverter-fed induction motor drive[J]. IET Power Electronics, 2011, 4(6): 624-631. [16] Kim K H. On-line estimation and compensation scheme for dead time and inverter nonlinearity independent of parameter variations in PMSM drive[J]. International Journal of Electronics, 2012, 99(12): 1651-1674. [17] Munoz A R, Lipo T A. On-line dead-time com- pensation technique for open-loop PWM-VSI drives[J]. IEEE Transactions on Power Electronics, 1999, 14(4): 683-689. [18] 王庆义, 尹泉, 刘杰, 等. 一种基于定子电流重构的死区补偿技术[J]. 电力电子技术, 2006, 40(2):73-75. Wang Qingyi, Yin Quan, Liu Jie, et al. Dead-time compensation technique based on the reconstructed currents[J]. Power Electronics, 2006, 40(2): 73-75. [19] Kim S Y, Lee W, Rho M S, et al. Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives[J]. IEEE Transactions on Industrial Electronics, 2010, 57(5): 1609-1614. [20] Mohamed A R I. Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 1981-1988.