1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China;
2. Sichuan Electric Power Design & Consulting Co., Ltd. Chengdu 610016 China
Grid-connected PV plants should have independent control of reactive power to support the grid. The equivalent aggregation model of large-scale photovoltaic (PV) plants is established firstly. With the existence of the line and transformer impedance, the grid voltage stability is reduced caused without the reactive power compensation device in PV plants and reactive power of the inverter. The three-level reactive power control strategy is proposed based on the cooperated control between the reactive power compensation device and the inverter. The strategy coordinates the reactive power output among the reactive power compensation devices, PV generation unit and inverters, which regulates the voltage very effectively. Then the grid active and reactive power losses can be minimized while maintaining the voltage in the required range. In order to ensure the stable operation of the grid, the PV array carries out lower power operation strategy when the reactive power output of PV plants is fixed. Moreover, the validity and the effectiveness of the method are validated by means of simulation results.
周林,任伟,廖波,晁阳,邵念彬,杜潇. 并网型光伏电站无功电压控制[J]. 电工技术学报, 2015, 30(20): 168-175.
Zhou Lin, Ren Wei, Liao Bo, Chao Yang, Shao Nianbin, Du Xiao. Reactive Power and Voltage Control for Grid-Connected PV Power Plants. Transactions of China Electrotechnical Society, 2015, 30(20): 168-175.
[1] 赵争鸣, 雷一, 贺凡波, 等. 大容量并网光伏电站技术综述[J]. 电力系统自动化, 2011, 35(12): 101-107.
Zhao Zhengming, Lei Yi, He Fanbo, et al. Overview of large-scale grid-connected photovoltaic power plants[J]. Automation of Electric Power System, 2011, 35(12): 101-107.
[2] Li H J, Xu Y, Adhikari S, et al. Real and reactive power control of a three-phase single-stage PV system and PV voltage stability[C]. IEEE Power and Energy Society General Meeting, San Diego, CA, 2012: 1-8.
[3] 袁建华, 高厚磊, 高峰. 多光伏发电直流网及其控制策略[J]. 电力自动化设备, 2011, 31(11): 8-12.
Yuan Jianhua, Gao Houlei, Gao Feng. DC network based on multiple photovoltaic power generations and its control[J]. Electric Power Automation Equipment, 2011, 31(11): 8-12.
[4] 邓向阳. 光伏建模与并网系统电压稳定性分析[D]. 新疆: 新疆大学, 2011.
[5] 阚加荣, 谢少军, 吴云亚. 无互联线并联逆变器的功率解耦控制策略[J]. 中国电机工程学报, 2008, 28(21): 40-45.
Kan Jiarong, Xie Shaojun, Wu Yunya. Research on decoupling droop characteristic for parallel inverters without control interconnection[J]. Proceedings of the CSEE, 2008, 28(21): 40-45.
[6] Mohd A, Ortjohann E, Schmelter A, et al. Challenges in integrating distributed energy storage systems into future smart grid[C]. IEEE International Symposium on Industrial Electronics, Cambridge, 2008: 1627-1632.
[7] Liu Y, Bebic J, Kroposki B, et al. Distribution system voltage performance analysis for high penetration PV[C]. IEEE Energy 2030 Conference, Atlanta, GA: 2008: 1-8.
[8] 王要强, 吴凤江, 孙力, 等. 带LCL输出滤波器的并网逆变器控制策略研究[J]. 中国电机工程学报, 2011, 31(12): 34-39.
Wang Yaoqiang, Wu Fengjiang, Sun Li, et al. Control strategy for grid-connected inverter with an LCL output filter[J]. Proceedings of the CSEE, 2011, 31(12): 34-39.
[9] 鲍陈磊, 阮新波, 王学华, 等. 基于PI调节器和电容电流反馈有源阻尼的LCL型并网逆变器闭环参数设计[J]. 中国电机工程学报, 2012, 32(25): 133-142.
Bao Chenlei, Ruan Xinbo, Wang Xuehua, et al. Design of grid-connected inverters with LCL filter based on PI regulator and capacitor current feedback active damping[J]. Proceedings of the CSEE, 2012, 32(25): 133-142.
[10] 汪海宁, 舒建徽, 丁明, 等. 光伏并网功率调节系统[J]. 中国电机工程学报, 2007, 27(2): 75-79.
Wang Haining, Shu Jianhui, Ding Ming, et al. Photovoltaic grid connected power conditioner system[J]. Proceedings of the CSEE, 2007, 27(2): 75-79.
[11] 张国荣, 张铁良, 丁明, 等. 具有光伏并网发电功能的统一电能质量调节器仿真[J]. 中国电机工程学报, 2007, 27(14): 82-86.
Zhang Guorong, Zhang Tieliang, Ding Ming, et al. Simulation research on unified power quality conditioner with PV grid connected generation[J]. Proceedings of the CSEE, 2007, 27(14): 82-86.
[12] Verband Deutscher Elektrotechniker (VDE). Technical minimum requirements for the connection to and parallel operation with low-voltage distribution networks[S]. Berlin: Vde Verlag Gmbh, 2011.
[13] Braun M, Stetz T, Reimann T, et al. Optimal reactive power supply in distribution networks-technological and economic assessment for PV systems[C]. European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 2009: 3872-3881.
[14] Geibel D. Multifunctional photovoltaic inverter systems-energy management and improvement of power quality and reliability in industrial environ- ments[C]. IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009: 3881-3888.
[15] Craciun B I, Man E A, Muresan V A, et al. Improved voltage regulation strategies by PV inverters in LV rural networks[C]. IEEE Power Electronics for Distributed Generation Systems (PEDG), Aalborg, 2012: 775-781.
[16] Wang Huan, Peng Yanchang, Yang Zilong. Analyzing the key technologies of large-scale application of PV grid-connected systems[C]. International Conference on Power System Technology, Hangzhou, China, 2010: 1-4.
[17] Braun M. Reactive power supply by distributed generators[C]. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, 2008: 1-8.
[18] 李乃永, 梁军, 赵义术. 并网光伏电站的动态建模与稳定性研究[J]. 中国电机工程学报, 2011, 31(10): 12-18.
Li Naiyong, Liang Jun, Zhao Yishu. Research on dynamic modeling and stability of grid-connected photovoltaic power station[J]. Proceedings of the CSEE, 2011, 31(10): 12-18.