1. Institute of Mechanical and Electronic Information Engineering China University of Mining & Technology (Beijing) Beijing 100083 China; 2. Department of Electronics and Electrical Engineering Nanyang Institute of Technology Nanyang 473004 China
Abstract:For the high distance constraint degree of magnetically-coupled resonant wireless power transfer (MCR-WPT) system transmissionefficiency, this paper analyzed and discussedthe effect of negative magnetic metamaterial on transmission efficiency of MCR-WPT system, deduced and verified the enhancement ofthe transmission of the evanescent wave with negative magnetic metamaterial. A MCR-WPT systemworking at ISM band was constructed and a low frequency spiral negative magnetic metamaterials suited tothe MCR-WPT system was designed in the platform of HFSS.Thenegative magnetic metamaterialdielectric-slab shows negative magnetic properties at the working frequency above 25MHz. The transmission efficiency of MCR-WPT system configured with spiral negative magnetic metamaterials in different positions was studied. Simulation and experimentresults show that the system transmission efficiency could be improved significantly, when the little-size negative magnetic metamaterials are placed at the transmitting terminal or the middle-size negative magnetic metamaterials are placed at the receiving terminal.Within a fixed transmission distance, the efficiency of the system with magnetic metamaterials has been improved at leastby 20%. In experiments, it has been improved by 30%.
田子建,陈健,樊京,林越,李玮祥. 基于磁负超材料的无线电能传输系统[J]. 电工技术学报, 2015, 30(12): 1-11.
Tian Zijian,Chen Jian,Fan Jing,Lin Yue,Li Weixiang. The Wireless Power Transfer System with Magnetic Metamaterials. Transactions of China Electrotechnical Society, 2015, 30(12): 1-11.
[1] 赵争鸣, 张艺明, 陈凯楠. 磁耦合谐振式无线电能传输技术新进展[J]. 中国电机工程学报, 2013, 33(3): 1-14. Zhao Zhengming, Zhang Yiming, Chen Kainan. New progress of magnetically-coupled resonant wireless power transfer technology[J]. Proceedingsofthe CSEE, 2013, 33(3): 1-14. [2] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86. [3] 杨冰, 王丽芳, 廖承林. 大规模电动汽车充电需求及影响因素[J]. 电工技术学报, 2013, 28(2): 22-37. Yang Bing, Wang Lifang, Liao Chenlin. Research on power-charging demandof large-scale electric vehicles and its impacting factors[J]. Transaction of China Electrotechnical Society, 2013, 28(2): 22-37. [4] 傅文珍, 张波, 丘东元, 等. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报, 2009, 29(18): 21-26. Fu Wenzhen, Zhang Bo, Qiu Dongyuan, et al. Maximum efficiency analysis and design of self-resonance coup- ling coils for wireless power transmission system[J]. Proceedings of the CSEE, 2009, 29(18): 21-26. [5] 谭林林, 黄学良, 黄辉, 等. 基于频率控制的磁耦合共振式无线电力传输系统传输效率优化控制[J]. 中国科学技术科学, 2011, 41(7): 913 - 919. Tan Linlin, Huang Xueliang, Huang Hui, et al. Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control[J]. Science China Press, 2011, 41(7): 913-919. [6] Kim J W, Son H C, Kim K H, et al. Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil[J]. IEEEAntennas and Wire- less Propagation Letters, 2011, 10(3): 389-392. [7] 李阳, 杨庆新, 闫卓, 等. 无线电能有效传输距离及其影响因素分析[J]. 电工技术学报, 2013, 28(1): 106-112. Li Yang, Yang Qingxin, Yan Zhuo, et al. Analysis on effective range of wireless power transfer and its impact factors[J]. Transaction of China Electrotech- nical Society, 2013, 28(1): 106-112. [8] 朱春波, 于春来, 毛银花, 等. 磁共振无线能量传输系统损耗分析[J]. 电工技术学报, 2012, 27(4): 13-17. Zhu Chunbo, Yu Chunlai, Mao Yinhua, et al. Analysis of the loss of magnetic resonant wireless power transfer[J]. Transaction of China Electrotech- nical Society, 2012, 27(4): 13-17. [9] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792. [10] Engheta N, Ziolkowski R W. A positive future for double-negative metamaterials[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(4): 1535-1556. [11] Wang B, Nishino T, Teo K H, et al. Experiments on wireless power transfer with metamaterials[J]. Applied Physics Letters, 2011, 98(25): 254101. [12] ChungJu K, Bomson L. Analysis of wireless power transmission between metamaterial-inspired loops[C]. Asia-Pacific Microwave Conference Proceedings, 2011: 94-97. [13] Wang B, Yerazunis W, Teo K H. Wireless power transfer: metamaterials and array of coupled resonators [C]. Institute of Electrical and Electronics Engineers, 2013, 101(6): 1359-1368. [14] PendryJB. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. [15] 李明洋, 刘敏. HFSS电磁仿真设计从入门到精通[M]. 北京: 人民邮电出版社, 2012 [16] Ahn D, Hong S. A Study on magnetic field repeater in wireless power transfer[J]. IEEE Transactions on Industral Electronics, 2013, 60(1): 360-371. [17] Beh T C, Imura T, Kato M, et al. Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching[C]. IEEE International Symposium on Indus- trial Electronics, 2010: 2011-2016. [18] ChenWC, BinghamC M, MakK M, et al. Extremely subwavelength planar magnetic metamaterials[J]. Physical Review B, 2012, 85(20): 201104. [19] PendryJ B, HoldenA J, RobbinsD J, et al. Magnetism from conductors and enhancednonlinear phenomena [J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084. [20] Smith D R, Vier D C, Koschny T, et al. Electro- magnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 2005, 71(3): 36617-1-11. [21] Pozar D M. 微波工程[M]. 北京: 电子工业出版社, 2013 [22] 王成. 单轴各向异性左手材料的特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2009. Wang Cheng. Research on characteristics of aniaxially anisotropic left-handed material[D]. Harbin: Harbin Engineering University, 2009. [23] Hu L B, Chui ST. Characteristics of electromagnetic wave propagationin uniaxially anisotropic left-handed materials[J]. Physical Review B, 2002, 66(8): 085108- 1-7.