Abstract:Wireless energy transfer system based on magnetic resonance can be applied in different situations. It is hard to make the structure and parameters of the receiver consistent with the transmitter. The impact of receiver parameters, including coils radius, conductor cross-sectional radius, number of turns, and height of coil on the inductance, resistance, quality factor, mutual inductance, coupling coefficient and transfer efficiency of wireless energy transfer systems based on magnetic resonance are studied with parameters of the transmitter are fixed, respectively. Theory calculations and PSPICE simulation indicate that the power transfer efficiency will increase with the increasing of receiver coils radius, conductor cross-sectional radius, number of turns, and height of receiving coil. The effect of radius of receiver is more significant than other parameters. The transfer efficiency will increase notable with the increasing of radius of receiver coils, while increasing slightly with the increasing of conductor cross-sectional radius, number of turns, and height of receiving coil.
石新智, 祁昶, 屈美玲, 叶双莉, 王高峰. 基于磁共振的无线能量传输系统接收模块参数研究[J]. 电工技术学报, 2014, 29(2): 204-211.
Shi Xinzhi, Qi Chang, Qu Meiling, Ye Shuangli, Wang Gaofeng. Receiver Parameters Analysis of Wireless Energy Transfer System Based on Magnetic Resonance. Transactions of China Electrotechnical Society, 2014, 29(2): 204-211.
[1] André Kurs, Aristeidis Karalis, Robert Moffatt, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317: 83-86. [2] Zhong WX, Lee CK, Hui SYR. General analysis on the use of Tesla’s resonators in domino forms for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 261-270. [3] Chen LH, Liu S, Zhou YC, et al. An optimizable circuit structure for high-efficiency wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 339-349. [4] Kiani M, Ghovanloo M. The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission[J]. IEEE Transactions on Circuits and Systems I—Regular Papers, 2012, 59(9): 2065- 2074. [5] Lee Chi Kwan, Zhong W X, Hui S Y R. Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 1905-1916. [6] Sample A P, Meyer D A, Joshua R Smith. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 544-554. [7] Chih Jung Chen, Tah Hsiung Chu, Chih-Lung Lin, et al. A study of loosely coupled coils for wireless power transfer[J]. IEEE Transactions on Circuits and Systems—II: Express Briefs, 2010, 57(7): 536-540. [8] Kim S, Ho JS, Chen LY, et al. Wireless power transfer to a cardiac implant[J]. Applied Physics Letters, 2012, 101(7): 10. 1063. [9] Chang CW, Hou KC, Shieh LJ, et al. Wireless powering electronics and spiral coils for implant microsystem toward nanomedicine diagnosis and therapy in free-behavior animal[J]. Solid-State Electronics, 2012, 77: 93-100. [10] Abdelnour K, Stinchcombe A, Porfiri M, et al. Wireless powering of ionic polymer metal composites toward hovering microswimmers[J]. IEEE-Asme Transactions on Mechatronics, 2012, 17(5): 924-935. [11] Hasanzadeh S, Vaez-Zadeh S, Isfahani AH. Optimization of a contactless power transfer system for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3566-3573. [12] Kim J, Son HC, Kim DH, et al. Optimal design of a wireless power transfer system with multiple self- resonators for an LED TV[J]. IEEE Transactions on Consumer Electronics, 2012, 58(3): 775-780. [13] Kumar A, Mirabbasi S, Chiao M. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants[J]. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5(1)48-63. [14] 曹玲玲, 陈乾宏, 任小永, 等. 电动汽车高效率无线充电技术的研究进展[J]. 电工技术学报, 2012, 27(8): 1-13. Cao Lingling, Chen Qianhong, Ren Xiaoyong, et al. Review of the efficient wireless power transmission technique for electric vehicles [J]. Transactions of China Electrotechnical Society, 2012, 27(8): 1-13. [15] 马纪梅, 杨庆新, 陈海燕. 影响无接触供电系统效率的因素分析[J]. 电工技术学报, 2010, 25(7): 19-22. Ma Jimei, Yang Qingxin, Chen Haiyan. Analysis on affecting factors of efficiency of the contactless energy transmission system[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 19-22. [16] 刘琦, 程春, 吴健, 等. 智能变电站温度监测主站系统的设计与实现[J]. 电力系统保护与控制, 2013, 41(4): 130-135. Liu Qi, Cheng Chun, Wu Jian, et al. Design and implementation of temperature monitoring system for intelligent substation[J]. Power System Protection and Control, 2013, 41(4): 130-135. [17] 刘强强, 李岩松, 杨以涵, 等. 无接触数据传输技术在配电网故障定位的应用[J]. 电力系统保护与控制, 2009, 371(12): 89-93. Liu Qiangqiang, Li Yansong, Yang Yihan, et al. Technology of data transmission without contact supplied in distribution fault location[J]. Power System Protection and Control, 2009, 371(12): 89-93. [18] 聂一雄, 刘艺, 王星华, 等. 电子式互感器工作电源解决方案研究[J]. 电力系统保护与控制, 2010, 38(14): 39-42. Nie Yixiong, Liu Yi, Wang Xinghua, et al. Research on solution of electronic transducer power supply[J]. Power System Protection and Control, 2010, 38(14): 39-42. [19] Yang Q X, Zhang X, Chen H Y, et al. Direct field-circuit coupled analysis and corresponding experiments of electromagnetic resonant coupling system[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3961-3964. [20] Zhao J, Xu G Z, Zhang C, et al. The design and research of a new kind small size resonator used in magnetic coupling resonance wireless energy trans- mission system[J]. IEEE Transactions on Magnetics, 2012, 48(11): 4030-4033. [21] 张献, 杨庆新, 陈海燕, 等. 电磁耦合谐振式无线电能传输系统的建模、设计与实验验证[J]. 中国电机工程学报, 2012, 32(21): 153-158. Zhang Xian, Yang Qingxin, Chen Haiyan, et al. Modeling and design and experimental verification of contactless power transmission systems via electro- magnetic resonant coupling[J]. Proceedings of the CSEE, 2012, 32(21): 153-158. [22] 朱春波, 于春来, 毛银花, 等. 磁共振无线能量传输系统损耗分析[J]. 电工技术学报, 2012, 27(4): 13-17. Zhu Chunbo, Yu Chunlai, Mao Yinhua, et al. Analysis of the loss of magnetic resonant wireless power transfer[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 13-17. [23] Chunlai Yu, Rengui Lu, Yinhua Mao, et al. Research on the model of magnetic-resonance based wireless energy transfer system[C]. Proceedings of IEEE Vehicle Power and Propulsion Conference, 2009: 414-418. [24] Nobumi Hagiwara. Study on the principle of contactless electric power transfer via electromagnetic coupling[J]. Electrical Engineering in Japan, 2013, 182: 53-60.