Abstract:With the increase of magnetically-coupled resonant wireless power transfer (MCR- WPT) technology, the electromagnetic environmental effects of the MCR-WPT on human body have become an important issue. Regarding MCR-WPT, this paper reviews the development, applications, and health effects from electromagnetic radiation exposure. Compared the international guidelines and national standards on electromagnetic exposure, recent research activities on electromagnetic environmental effects of MCR-WPT are summarized as follows: i) main system models of MCR-WPT, ii) different human body models, iii) various numerical methods and simulation approaches. Meanwhile, the unsolved problems and new challenges about the electromagnetic environmental effects of MCR-WPT are listed in this paper.
周洪, 蒋燕, 胡文山, 罗垚, 邓其军. 磁共振式无线电能传输系统应用的电磁环境安全性研究及综述[J]. 电工技术学报, 2016, 31(2): 1-12.
Zhou Hong, Jiang Yan, Hu Wenshan, Luo Yao, Deng Qijun. Review and Research on Health and Safety Issues for Magnetically-Coupled Resonant Wireless Power Transfer Systems. Transactions of China Electrotechnical Society, 2016, 31(2): 1-12.
[1] Tesla N. Apparatus for transmitting electrical energy: US 1119732[P]. 1914-10. [2] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86. [3] Imura T, Okabe H, Uchida T, et al. Study of magnetic and electric coupling for contactless power transfer using equivalent circuits[J]. IEEE Transactions on Industry Applications, 2010, 130(1): 84-92. [4] Imura T, Hori Y. Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10): 4746-4752. [5] Teck C B, Imura T, Kato M, et al. Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching[C]//IEEE International Symposium on Industrial Electronics, 2010: 2011-2016. [6] Hirayama H, Amano T, Kikuma N, et al. A consider- ation of open-and short-end type helical antennas for magnetic-coupled resonant wireless power transfer[C]//European Conference on Antennas and Propagation, 2012: 3009-3013. [7] Kim J W, Son H C, Kim K H, et al. Efficiency analysis of magnetic resonance wireless power trans- fer with intermediate resonant coil[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10(1): 389- 392. [8] Kiani M, Jow U M, Ghovanloo M. Design and optimization of a 3-coil inductive link for efficient wireless power transmission[J]. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5(6): 579-591. [9] Kiani M, Ghovanloo M. The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(9): 2065- 2074. [10] Lee C K, Zhong W X, Hui S Y R. Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 1905-1916. [11] Lee B J, Hillenius A, Ricketts D S. Magnetic resonant wireless power delivery for distributed sensor and wireless systems[C]//IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), 2012: 13-16. [12] Zhong W X, Lee C K, Hui S Y R. General analysis on the use of tesla's resonators in domino forms for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 261-270. [13] Zhong W X, Lee C K, Hui S Y R. Wireless power domino-resonator systems with noncoaxial axes and circular structures[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4750-4762. [14] Hamam R E, Karalis A, Joannopoulos J D, et al. Efficient weakly-radiative wireless energy transfer: an EIT-like approach[J]. Annals of Physics, 2009, 324(8): 1783-1795. [15] Kurs A, Moffatt R, Soljacic M. Simultaneous mid-range power transfer to multiple devices[J]. Applied Physics Letters, 2010, 96(4): 44102/1- 44102/3. [16] RamRakhyani A K, Mirabbasi S, Mu C. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants[J]. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5(1): 48-63. [17] 张献, 杨庆新, 崔玉龙, 等. 大功率无线电能传输系统能量发射线圈设计、优化与验证[J]. 电工技术学报, 2013, 28(10): 12-18. Zhang Xian, Yang Qingxin, Cui Yulong, et al. Design optimization and verification on the power trans- mitting coil in the high-power wireless power trans- mission system[J]. Transactions of China Electro- technical Society, 2013, 28(10): 12-18. [18] 谭林林, 黄学良, 赵俊锋, 等. 一种无线电能传输系统的盘式谐振器优化设计[J]. 电工技术学报, 2013, 28(8): 1-6. Tan Linlin, Huang Xueliang, Zhao Junfeng, et al. Optimization design for disc resonators of a wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 1-6. [19] 杨庆新, 陈海燕, 徐桂芝, 等. 无接触电能传输技术的研究进展[J]. 电工技术学报, 2010, 25(7): 6-13. Yang Qingxin, Chen Haiyan, Xu Guizhi, et al. Research progress in contactless power transmission technology[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 6-13. [20] 赵争鸣, 张艺明, 陈凯楠. 磁耦合谐振式无线电能传输技术新进展[J]. 中国电机工程学报, 2013, 33(3): 1-13. Zhao Zhengming, Zhang Yiming, Chen Kainan. New progress of magnetically-coupled resonant wireless power transfer technology[J]. Proceedings of the CSEE, 2013, 33(3): 1-13. [21] 黄学良, 谭林林, 陈中, 等. 无线电能传输技术研究与应用综述[J]. 电工技术学报, 2013, 28(10): 1-11. Huang Xueliang, Tan Linlin, Chen Zhong, et al. Review and research progress on wireless power transfer technology[J]. Transactions of China Electro- technical Society, 2013, 28(10): 1-11. [22] 孙跃, 夏晨阳, 戴欣, 等. 感应耦合电能传输系统互感耦合参数的分析与优化[J]. 中国电机工程学报, 2010, 30(33): 44-50. Sun Yue, Xia Chenyang, Dai Xin, et al. Analysis and optimization of mutual inductance for inductively coupled power transfer system[J]. Proceedings of the CSEE, 2010, 30(33): 44-50. [23] 武瑛, 严陆光, 徐善纲. 新型无接触电能传输系统的稳定性分析[J]. 中国电机工程学报, 2004, 24(5): 63-66. Wu Ying, Yan Luguang, Xu Shangang. Stability analysis of the new contactless power delivery system[J]. Proceedings of the CSEE, 2004, 24(5): 63-66. [24] 侯佳, 陈乾宏, 严开沁, 等. 新型S/SP补偿的非接触谐振变换器分析与控制[J]. 中国电机工程学报, 2013, 33(33): 1-9. Hou Jia, Chen Qianhong, Yan Kaiqin, et al. Analysis and control of S/SP compensation contactless resonant converters[J]. Proceedings of the CSEE, 2013, 33(33): 1-9. [25] 刘志强, 颜国正, 克磊, 等. 人工肛门括约肌无线经皮供能系统及实验研究[J]. 仪器仪表学报, 2013, 34(12): 2831-2838. Liu Zhiqiang, Yan Guozheng, Ke Lei. Wireless transcutaneous power supply system for artificial anal sphincter and its experimental study[J]. Chinese Journal of Scientific Instrument, 2013, 34(12): 2831-2838. [26] 于歆杰, 吴天逸, 李臻. 基于Metglas/PFC磁电层状复合材料的电能无线传输系统[J]. 物理学报, 2013, 62(5): 058503/1-058503/8. Yu Xinjie, Wu Tianyi, Li Zhen. Wireless energy transfer system based on metglas/PFC magnetoe- lectric laminated composites[J]. Acta Physica Sinica, 2013, 62(5): 058503/1-058503/8. [27] Yu Chunlai, Lu Rengui, Mao Yinhua, et al. Research on the model of magnetic-resonance based wireless energy transfer system[C]//IEEE Vehicle Power and Propulsion Conference, 2009: 414-419. [28] Zhu Chunbo, Liu Kai, Yu Chunlai, et al. Simulation and experimental analysis on wireless energy transfer based on magnetic resonances[C]//IEEE Vehicle Power and Propulsion Conference, 2008: 1-4. [29] 朱春波, 于春来, 毛银花, 等. 磁共振无线能量传输系统损耗分析[J]. 电工技术学报, 2012, 27(4): 13-17. Zhu Chunbo, Yu Chunlai, Mao Yinhua, et al. Analysis of the loss of magnetic resonant wireless power transfer[J]. Transactions of China Electro- technical Society, 2012, 27(4): 13-17. [30] 黄辉, 黄学良, 谭林林, 等. 基于磁场谐振耦合的无线电力传输发射及接收装置的研究[J]. 电工电能新技术, 2011, 30(1): 32-35. Huang Hui, Huang Xuelang, Tan Linlin, et al. Research on transmitter and receiver of wireless power transmission based on magnetic resonance coupling[J]. Advanced Technology of Electrical Engineering and Energy, 2011, 30(1): 32-35. [31] 谭林林, 黄学良, 黄辉, 等. 基于频率控制的磁耦合共振式无线电力传输系统传输效率优化控制[J]. 中国科学: 技术科学, 2011, 41(7): 913-919. Tan Linlin, Huang Xuelang, Huang Hui, et al. Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control[J]. Science China (Series E), 2011, 41(7): 913-919. [32] 黄学良, 吉青晶, 谭林林,等. 磁耦合谐振式无线电能传输系统串并式模型研究[J]. 电工技术学报, 2013, 28(3): 171-176. Huang Xueliang, Ji Qingjing, Tan Linlin, et al. Study on series-parallel model of wireless power transfer via magnetic resonance coupling[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 171- 176. [33] 傅文珍, 张波, 丘东元. 基于谐振耦合的电能无线传输系统设计[J]. 机电工程, 2011, 28(6): 746-749. Fu Wenzhen, Zhang Bo, Qiu Dongyuan. Design of wireless power transfer system based on resonant coupling[J]. Journal of Mechanical & Electrical Engineering, 2011, 28(6):746-749. [34] 傅文珍, 张波, 丘东元, 等. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报, 2009, 29(18): 21-26. Fu Wenzhen, Zhang Bo, Qiu Dongyuan, et al. Maximum efficiency analysis and design of self-resonance coupling coils for wireless power transmission system[J]. Proceedings of the CSEE, 2009, 29(18): 21-26. [35] 傅文珍, 张波, 丘东元. 频率跟踪式谐振耦合电能无线传输系统研究[J]. 变频器世界, 2009(8): 41-46. Fu Wenzhen, Zhang Bo, Qiu Dongyuan. Study on frequency-tracking wireless power transfer system by resonant coupling[J]. The World of Inverters, 2009(8): 41-46. [36] 张献, 杨庆新, 陈海燕, 等. 电磁耦合谐振式无线电能传输系统的建模、设计与实验验证[J]. 中国电机工程学报, 2012, 32(21): 153-158. Zhang Xian, Yang Qingxin, Chen Haiyan, et al. Experimental verification of contactless power transmission systems via electromagnetic resonant coupling[J]. Proceedings of the CSEE, 2012, 32(21): 153-158. [37] 李阳, 杨庆新, 陈海燕, 等. 无线电能传输系统中不同阻抗匹配方法的分析[J]. 电工电能新技术, 2012, 31(3): 31-34, 39. Li Yang, Yang Qingxin, Chen Haiyan, et al. Influence factors analysis on power and efficiency in wireless power transfer system[J]. Advanced Techno- logy of Electrical Engineering and Energy, 2012, 31(3): 31-34, 39. [38] Hu Wenshan, Zhou Hong, Deng Qijun, et al. Optimization algorithm and practical implement- ation for 2-coil wireless power transfer systems[C]// American Control Conference, 2014: 4330-4335. [39] Gao Like, Hu Wenshan, Xie Xiongwei, et al. Optimum design of coil for wireless energy transmission system based on resonant coupling[C]//IEEE International Conference on Control and Automation (ICCA), 2013: 190-195. [40] 中国科协学会学术部. 无线电能传输关键技术问题与应用前景(新观点新学说学术沙龙文集57)[M]. 北京: 中国科学技术出版社, 2012. [41] Jung K H, Kim Y H, Kim J, et al. Wireless power transmission for implantable devices using inductive component of closed magnetic circuit[J]. Electronics Letters, 2009, 45(1): 21-22. [42] Imura T, Okabe H, Hori Y. Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant couplings[C]//IEEE Vehicle Power and Propulsion Conference, 2009: 936-940. [43] Moglia A, Menciassi A, Schurr M O, et al. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems[J]. Biomedical Micro- devices, 2007, 9(2): 235-243. [44] Fang Xuelin, Liu Hao, Li Guiyang, et al. Wireless power transfer system for capsule endoscopy based on strongly coupled magnetic resonance theory[C]// International Conference on Mechatronics and Auto- mation, 2011: 232-236. [45] 谢莉, 雷银照. 架空传输线在电偶极子激励下的瞬态电磁响应[J]. 电工技术学报, 2009, 24(4): 6-13. Xie Li, Lei Yinzhao. Transient electromagnetic response of over head transmission line excited by an electric dipole[J]. Transactions of China Electro- technical Society, 2009, 24(4): 6-13. [46] Li Zesong, Li Dejun, Lin Lin, et al. Design considerations for electromagnetic couplers in contactless power transmission systems for deep-sea applications[J]. Journal of Zhejiang University (Science C), 2010, 11(10): 824-834. [47] Yang Ping, Guo Tao, Wang Wei, et al. Randomized and double-blind controlled clinical trial of extracorporeal cardiac shock wave therapy for coronary heart disease[J]. Heart and Vessels, 2013, 28(3): 284-291. [48] Hallett M. Transcranial magnetic stimulation and the human brain[J]. Nature, 2000, 406(6792): 147-150. [49] Kheifets L, Renew D, Sias G, et al. Extremely low frequency electric fields and cancer: Assessing the evidence[J]. Bioelectromagnetics, 2010, 31(2): 89- 101. [50] Zamanian A, Hardiman C. Electromagnetic radiation and human health: A review of sources and effects[J]. High Frequency Electronics, 2005, 4(3): 16-26. [51] http://www.who.int/mediacentre/factsheets/fs193/zh/ [52] 贾智伟, 颜国正, 石煜, 等. 基于生物安全性的无线能量传输系统发射线圈优化设计[J]. 高技术通讯, 2012, 22(8): 857-862. Jia Zhiwei, Yan Guozheng, Shi Yu, et al. Optimization design of transmitting coils in a wireless power transmission system based on the human tissue safety[J]. High Technology Letters, 2012, 22(8): 857-862. [53] 赵军, 徐桂芝, 张超, 等. 磁耦合谐振无线能量传输系统头部植入线圈对人体头部电磁辐射影响的研究[J]. 中国生物医学工程学报, 2012, 31(5): 649-654. Zhao Jun, Xu Guizhi, Zhang Chao, et al. Electro- magnetic radiation to head from head implantable coil powered via magnetic coupling resonance wire- less energy transmission[J]. Chinese Journal of Bio- medical Engineering, 2012, 31(5): 649-654. [54] 李旦. 面向无线能量传输的射频信号在生物体内传播规律的实验研究[D]. 北京: 北京大学, 2008. [55] 曲立楠. 磁耦合谐振式无线能量传输机理的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [56] 黄学良, 吉青晶, 曹伟杰, 等. 磁谐振式无线电能传输系统谐振器的电磁场分析[J]. 电工技术学报, 2013, 28(增1): 105-109. Huang Xueliang, Ji Qingjing, Cao Weijie, et al. The magnet field simulation and measurement of resonator in wireless power transmission based on magnetic resonant coupling[J]. Transactions of China Electrotechnical Society, 2013, 28(S1): 105-109. [57] Dickinson R M. Safety issues in SPS wireless power transmission[J]. Space Policy, 2000, 16(2): 117-122. [58] IEEE Std C95.1™—2005, IEEE standard for safety levels with respect to human exposure to radio fre- quency electromagnetic fields, 3kHz to 300GHz[S]. [59] Laakso I, Tsuchida S, Hirata A, et al. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band[J]. Physics in Medicine and Biology, 2012, 57(15): 4991/1-4991/8. [60] Hirata A, Sunohara T, Laakso I, et al. SAR in a simplified human model due to wireless power transfer with induction coupling[C]//7th European Conference on Antennas and Propagation (EuCAP), 2013: 1769-1772. [61] Sunohara T, Laakso I, Chan K H, et al. Compliance of induced quantities in human model for wireless power transfer system at 10 MHz[C]//Proceedings of 2013 URSI International Symposium on Electro- magnetic Theory (EMTS), 2013: 831-833. [62] Hirata A, Ito F, Laakso I. Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system[J]. Physics in Medicine and Biology, 2013, 58(17): N241/1- N241/7. [63] Laakso I, Hirata A. Evaluation of the induced electric field and compliance procedure for a wireless power transfer system in an electrical vehicle[J]. Physics in Medicine and Biology, 2013, 58(21):7583/1-7583/7. [64] Hirata A, Tsuchida S, Laakso I. Variability of SAR in different human models due to wireless power transfer with magnetic resonance[C]//International Symposium on Electromagnetic Compatibility (EMC Europe), 2013: 89-92. [65] Christ A, Douglas M G, Roman J M, et al. Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(2): 265-274. [66] Xi Lin Chen, D Umenei A E, De Santis V, et al. Human exposure to close-range resonant wireless power transfer systems as a function of design parameters[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1027-1034. [67] Christ A, Kainz W, Hahn E G, et al. The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations[J]. Physics in Medicine and Biology, 2010, 55(2): 23-38. [68] Nagaoka T, Watanabe S, Sakurai K, et al. Devel- opment of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry[J]. Physics in Medicine and Biology, 2004, 49(1): 1-15. [69] Dimbylow P J. FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz[J]. Physics in Medicine and Biology, 1997, 42(3): 479-490. [70] Dimbylow P. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI[J]. Physics in Medicine and Biology, 2005, 50(17): 4053-4063. [71] Jack V. Basic anatomical and physiological data for use in radiological protection: reference values[J]. Annals of the ICRP, 2002, 32(3): 1-277. [72] Protection International Commission on Non- ionizing. guidelines for limiting exposure to time-varying electric and magnetic fields (1Hz to 100kHz)[J]. Health Physics, 2010, 99(6): 818-836. [73] International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300GHz)[J]. Health Physics, 1998, 74(4): 494-522. [74] IEEE Std C95.3™—2002(R2008). IEEE recom- mended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100kHz to 300GHz[S]. [75] IEEE Std C95.3.1™—2010. IEEE recommended practice for measurements and computations of electric, magnetic, and electromagnetic fields with respect to human exposure to such fields, 0Hz to 100kHz[S]. [76] IEEE Std C95.6™—2002. IEEE standard for safety levels with respect to human exposure to electro- magnetic fields, 0 to 3kHz[S]. [77] IEEE Std C95.7™—2005. IEEE recommended practice for radio frequency safety programs, 3kHz to 300GHz[S]. [78] David L M, Kwok W Chan. Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields, additional information for evaluating compliance of mobile and portable devices with FCC limits for human exposure to radiofrequency emissions[EB]. F.C.C.O. of Engineering Technology, Supplement C (Ed. 01-01) to OET Bulletin 65 (Ed. 97-01), 2001: 1-57. [79] GB 8702—88. 电磁辐射防护规定[S]. [80] HJ/T 24—1998. 500kV超高压送变电工程电磁辐射环境影响评价技术规范[S]. [81] HJT 10.3—1996. 辐射环境保护管理导则-电磁辐射环境影响评价方法与标准[S]. [82] GB 9175—88. 环境电磁波卫生标准[S]. [83] GBZ/T 189.2—2007. 工作场所物理因素测量高频电磁场[S]. [84] Hirayama H, Ozawa T, Hiraiwa Y, et al. A consideration of electro-magnetic-resonant coupling mode in wireless power transmission[J]. IEICE Electronics Express, 2009, 6(19): 1421-1425. [85] Wu Zhiding, Zhou Hong, Gao Like, et al. Research on transmission efficiency of waveform in resonant induction wireless energy transmission system[C]// The 2013 International Conference on Energy, 2013: 373-379. [86] Sample A P, Meyer D A, Smith J R. Analysis, experimental results, and range adaptation of magneti- cally coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 544-554.