A Review of Typical Forms and Participation Models of Electricity-Hydrogen Synergy in the Context of Electricity-Carbon-Green Certificate Markets
Hong Lucheng1, Wang Ziqiu1, Lin Jin2, Zhu Jin1, Yuan Xiaodong3
1. School of Electrical Engineering Southeast University Nanjing 210096 China; 2. Department of Electrical Engineering Tsinghua University Beijing 100084 China; 3. State Grid Electric Power Research Institute of Jiangsu Province Nanjing 211103 China
Abstract:Against the backdrop of global climate change and energy transition, hydrogen energy has gained widespread attention for its high energy density and environmentally friendly characteristics. As a crucial pathway to achieving a low-carbon economy, the coordinated development of electricity and hydrogen is becoming a focal point of energy policies worldwide. Furthermore, the integration of electricity, carbon, and green certificate markets amidst the ongoing low-carbon transformation of the power sector has created new value opportunities for electricity-hydrogen collaboration. This study investigates typical forms and participation models of electricity-hydrogen coordination in the context of these interconnected markets. The research begins by examining the transaction frameworks of the electricity, carbon, and green certificate markets and their synergistic interactions. An analysis of the current development status of these markets highlights several challenges, such as the differentiation and interconnection of market products, the accounting of indirect CO2 emissions, and the issue of overlapping environmental values. These challenges reduce market transparency and limit the participation of emerging entities like electricity-hydrogen projects. By summarizing existing measures, the study reveals how green electricity-hydrogen projects can unlock greater potential by selecting suitable products and actively participating in market transactions, thereby contributing to energy transition and low-carbon economic growth. Next, the study explores typical application scenarios and values of electricity-hydrogen coordination across power system generation, grid, and load sectors. On the generation side, hydrogen can support renewable energy integration through hydrogen production and enable the transformation of traditional units via ammonia blending in coal power and hydrogen blending in gas power. On the grid side, hydrogen storage systems can alleviate transmission and distribution bottlenecks, while diversified hydrogen storage and transportation methods facilitate long-term, cross-regional energy balancing. On the load side, electricity-hydrogen collaboration promotes efficient energy utilization and carbon reduction across sectors such as chemicals, steel, transportation, and rural areas. The feasibility of electricity-hydrogen participation in electricity, carbon, and green certificate markets is then analyzed, and corresponding participation models are proposed. Based on the coupling relationships between electricity-hydrogen, carbon-hydrogen, and green certificates-hydrogen, the study establishes an integrated framework for these markets. From the perspective of the electricity market, it develops a pathway diagram for electricity-hydrogen coordination, outlining the roles and revenue mechanisms in different application scenarios across generation, grid, and load sectors, accompanied by recommendations for matching mechanisms. In the carbon market, scenarios involving ammonia blending in coal power and processes in steel and chemical industries can generate income through carbon quota trading once incorporated into regulatory frameworks. Other projects meeting principles of authenticity, uniqueness, and additionality can apply for CCER (Chinese certified emission reduction) for compensation. In the green certificate market, the combination of green power and green certificates is considered a critical development pathway. Projects should develop optimized trading strategies by considering the prices and cycles of the carbon market and green certificate market to maximize economic benefits. Finally, the study addresses the challenges faced by electricity-hydrogen coordination in a market-driven environment, offering several recommendations. These include accelerating the research and implementation of key technologies, advancing the comprehensive deployment of electricity-hydrogen applications, enhancing market alignment and trading mechanisms, and promoting the standardization of green hydrogen certification and transactions. These measures aim to provide valuable insights for researchers and drive the widespread adoption and sustainable development of hydrogen energy.
洪芦诚, 王梓萩, 林今, 朱进, 袁晓东. 电-碳-绿证市场背景下电氢协同典型形态及参与模式研究综述[J]. 电工技术学报, 2025, 40(23): 7498-7514.
Hong Lucheng, Wang Ziqiu, Lin Jin, Zhu Jin, Yuan Xiaodong. A Review of Typical Forms and Participation Models of Electricity-Hydrogen Synergy in the Context of Electricity-Carbon-Green Certificate Markets. Transactions of China Electrotechnical Society, 2025, 40(23): 7498-7514.
[1] 林旗力, 戚宏勋, 黄晶晶, 等. 碱性-质子交换膜水电解复合制氢平准化成本分析[J]. 储能科学与技术, 2023, 12(11): 3572-3580. Lin Qili, Qi Hongxun, Huang Jingjing, et al.Levelized cost of combined hydrogen production by water electrolysis with alkaline-proton exchange membrane[J]. Energy Storage Science and Technology, 2023, 12(11): 3572-3580. [2] 林旗力, 陈珍, 王晓虎, 等. 基于“电-氢-电”过程的规模化氢储能经济性分析[J]. 储能科学与技术, 2024, 13(6): 2068-2077. Lin Qili, Chen Zhen, Wang Xiaohu, et al.Economic analysis of large-scale hydrogen energy storage based on the “electric-hydrogen-electric” process[J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. [3] 国家发展改革委, 国家统计局, 国家能源局. 关于加强绿色电力证书与节能降碳政策衔接大力促进非化石能源消费的通知[EB/OL]. (2024-01-27)[2024-08-11]. https://www.gov.cn/zhengce/zhengceku/202402/content_6929877.htm. [4] 马若冉. 新型电力系统背景下促进氢能发展的商业模式研究[D]. 北京: 中国石油大学(北京), 2023. Ma Ruoran.Research on the business model of promoting the development of hydrogen energy under the background of new electrical power system[D]. Beijing: China University of Petroleum, 2023. [5] 冯天天. 绿证交易及碳交易对电力市场的耦合效应分析模型研究[D]. 北京: 华北电力大学, 2016. Feng Tiantian.Coupling induction effect analysis model of tradable green certificates and carbon emission trading on electricity market in China[D]. Beijing: North China Electric Power University, 2016. [6] 程松, 周鑫, 任景, 等. 面向新型能源体系的电力市场机制发展趋势研究[J]. 广东电力, 2023, 36(11): 29-40. Cheng Song, Zhou Xin, Ren Jing, et al.Research on the trend of electricity market mechanism for new energy system[J]. Guangdong Electric Power, 2023, 36(11): 29-40. [7] 中华人民共和国生态环境部. 《全国碳市场发展报告(2024)》[EB/OL]. (2024-07-22)[2024-08-11]. https://www.mee.gov.cn/ywdt/xwfb/202407/t20240722_1082192.shtml. [8] 德恒律师事务所. 绿证、绿电与碳交易现状问题分析及衔接机制的探讨[EB/OL]. (2021-12-30)[2024-08-12]. https://www.dehenglaw.com/CN/tansuocontent/0008/023559/7.aspx?MID=0902. [9] 王心昊, 蒋艺璇, 陈启鑫, 等. 可交易减排价值权证比较分析和衔接机制研究[J]. 电网技术, 2023, 47(2): 594-603. Wang Xinhao, Jiang Yixuan, Chen Qixin, et al.On tradeable certificates of emissions reduction and their interactions[J]. Power System Technology, 2023, 47(2): 594-603. [10] 尚楠, 陈政, 冷媛. 电碳市场背景下典型环境权益产品衔接互认机制及关键技术[J]. 中国电机工程学报, 2024, 44(7): 2558-2578. Shang Nan, Chen Zheng, Leng Yuan.Mutual recognition mechanism and key technologies of typical environmental interest products in power and carbon markets[J]. Proceedings of the CSEE, 2024, 44(7): 2558-2578. [11] 黄国日, 尚楠, 梁梓杨, 等. 绿色电力消费与碳交易市场的链接机制研究[J]. 电网技术, 2024, 48(2): 668-678. Huang Guori, Shang Nan, Liang Ziyang, et al.Research on the linkage mechanism between green power consumption and the carbon market[J]. Power System Technology, 2024, 48(2): 668-678. [12] 尚楠, 陈政, 卢治霖, 等. 电力市场、碳市场及绿证市场互动机理及协调机制[J]. 电网技术, 2023, 47(1): 142-154. Shang Nan, Chen Zheng, Lu Zhilin, et al.Interaction principle and cohesive mechanism between electricity market, carbon market and green power certificate market[J]. Power System Technology, 2023, 47(1): 142-154. [13] 吴全, 沈珏新, 余磊, 等. “双碳” 背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33, 39. Wu Quan, Shen Juexin, Yu Lei, et al.Analysis on the hydrogen-ammonia storage and transportation technology and economical efficiency against the “dual-carbon” Background[J]. Petroleum and New Energy, 2022, 34(5): 27-33, 39. [14] 陈梦萍, 任建兴, 李芳芹. 风光互补与电解水制氢系统负荷的协调稳定运行[J]. 太阳能学报, 2023, 44(3): 344-350. Chen Mengping, Ren Jianxing, Li Fangqin.Coordinated and stable operation of wind solar complementarity and load of electrolytic water hydrogen production system[J]. Acta Energiae Solaris Sinica, 2023, 44(3): 344-350. [15] 钱宇, 陈耀熙, 史晓斐, 等. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110, 2290. Qian Yu, Chen Yaoxi, Shi Xiaofei, et al.Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system[J]. CIESC Journal, 2022, 73(5): 2101-2110, 2290. [16] 黄启帆, 陈洁, 曹喜民, 等. 基于碱性电解槽和质子交换膜电解槽协同制氢的风光互补制氢系统优化[J]. 电力自动化设备, 2023, 43(12): 168-174. Huang Qifan, Chen Jie, Cao Ximin, et al.Optimization of wind-photovoltaic complementation hydrogen production system based on synergistic hydrogen production by alkaline electrolyzer and proton exchange membrane electrolyzer[J]. Electric Power Automation Equipment, 2023, 43(12): 168-174. [17] 王舜彦, 任永峰, 张小龙, 等. 基于混合电解槽自适应控制的光伏制绿氢系统研究[J]. 太阳能学报, 2024, 45(7): 20-28. Wang Shunyan, Ren Yongfeng, Zhang Xiaolong, et al.Study on photovoltaic green hydrogen production system based on adaptive control of hybrid electrolyzer[J]. Acta Energiae Solaris Sinica, 2024, 45(7): 20-28. [18] 孙翔, 刘成良, 牛霞, 等. 风光耦合制氢系统典型设计方案研究[J]. 南方能源建设, 2023, 10(3): 112-119. Sun Xiang, Liu Chengliang, Niu Xia, et al.Research on typical design of wind-solar coupled hydrogen production system[J]. Southern Energy Construction, 2023, 10(3): 112-119. [19] 周建力. 风-光-氢综合能源系统容量配置优化及决策模型研究[D]. 北京: 华北电力大学, 2023. Zhou Jianli. Research on capacity configuration optimization and decision-making model of wind-photovoltaic-hydrogen integrated energy system[D]. Beijing: North China Electric Power University, 2023. [20] Sun Xunhang, Cao Xiaoyu, Zeng Bo, et al.Multistage dynamic planning of integrated hydrogen-electrical microgrids under multiscale uncertainties[J]. IEEE Transactions on Smart Grid, 2023, 14(5): 3482-3498. [21] 杨胜, 樊艳芳, 侯俊杰, 等. 考虑平抑风光波动的ALK-PEM电解制氢系统容量优化模型[J]. 电力系统保护与控制, 2024, 52(1): 85-96. Yang Sheng, Fan Yanfang, Hou Junjie, et al.Capacity optimization model for an ALK-PEM electrolytic hydrogen production system considering the stabilization of wind and PV fluctuations[J]. Power System Protection and Control, 2024, 52(1): 85-96. [22] 李亚军, 何山, 胡兵, 等. 考虑最大效率的风光制氢系统容量配置及功率调控[J]. 电气传动, 2024, 54(10): 50-57. Li Yajun, He Shan, Hu Bing, et al.Capacity configuration and power regulation of scenic hydrogen production system considering maximum efficiency[J]. Electric Drive, 2024, 54(10): 50-57. [23] 李琦, 韩运滨, 白章, 等. 离网型风光发电联合制氢系统的协调运行策略与容量配置优化[J]. 中国电机工程学报, 2024, 44(20): 8136-8146. Li Qi, Han Yunbin, Bai Zhang, et al.Coordination operation strategy and capacity optimization of off-grid wind-solar hybrid hydrogen production system[J]. Proceedings of the CSEE, 2024, 44(20): 8136-8146. [24] Kwon H, Koo B.Integrated hydrogen production strategy based on multi-objective optimization considering carbon dioxide emission reduction goals[J]. Applied Thermal Engineering, 2024, 236: 121717. [25] Çiçek A.Multi-objective operation strategy for a community with RESs, fuel cell EVs and hydrogen energy system considering demand response[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102957. [26] 邱一苇, 朱杰, 曾扬俊, 等. 离网型可再生能源发电制氢能量管理技术需求分析与展望[J]. 电力系统自动化, 2024, 48(22): 43-59. Qiu Yiwei, Zhu Jie, Zeng Yangjun, et al.Technological requirement analysis and prospect of energy management for off-grid renewable power-to-hydrogen systems[J]. Automation of Electric Power Systems, 2024, 48(22): 43-59. [27] 刘玮, 万燕鸣, 熊亚林, 等. 碳中和目标下电解水制氢关键技术及价格平准化分析[J]. 电工技术学报, 2022, 37(11): 2888-2896. Liu Wei, Wan Yanming, Xiong Yalin, et al.Key technology of water electrolysis and levelized cost of hydrogen analysis under carbon neutral vision[J]. Transactions of China Electrotechnical Society, 2022, 37(11): 2888-2896. [28] Wu Di, Wang Dexin, Ramachandran T, et al.A techno-economic assessment framework for hydrogen energy storage toward multiple energy delivery pathways and grid services[J]. Energy, 2022, 249: 123638. [29] 国家能源局. 煤电低碳化改造建设行动方案(2024 —2027年)[EB/OL]. (2024-06-24)[2024-08-05]. https://www.gov.cn/zhengce/zhengceku/202407/content_6963501.htm. [30] 谭厚章, 周上坤, 杨文俊, 等. 氨燃料经济性分析及煤氨混燃研究进展[J]. 中国电机工程学报, 2023, 43(1): 181-191. Tan Houzhang, Zhou Shangkun, Yang Wenjun, et al.Economic analysis of ammonia and research progress of coal-ammonia co-firing[J]. Proceedings of the CSEE, 2023, 43(1): 181-191. [31] 李玲. 氨能为煤电降碳探新路[EB/OL]. (2023-12-25)[2024-08-05]. http://paper.people.com.cn/zgnyb/html/2023-12/25/content_26035041.htm. [32] 秦锋, 秦亚迪, 单彤文. 碳中和背景下氢燃料燃气轮机技术现状及发展前景[J]. 广东电力, 2021, 34(10): 10-17. Qin Feng, Qin Yadi, Shan Tongwen.Technology status and development prospects of hydrogen fuel gas turbine under the background of carbon neutral[J]. Guangdong Electric Power, 2021, 34(10): 10-17. [33] 王士博, 孔令国, 蔡国伟, 等. 电力系统氢储能关键应用技术现状、挑战及展望[J]. 中国电机工程学报, 2023, 43(17): 6660-6681. Wang Shibo, Kong Lingguo, Cai Guowei, et al.Current status, challenges and prospects of key application technologies for hydrogen storage in power system[J]. Proceedings of the CSEE, 2023, 43(17): 6660-6681. [34] 许传博, 刘建国. 氢储能在我国新型电力系统中的应用价值、挑战及展望[J]. 中国工程科学, 2022, 24(3): 89-99. Xu Chuanbo, Liu Jianguo.Hydrogen energy storage in China’s new-type power system: application value, challenges, and prospects[J]. Strategic Study of CAE, 2022, 24(3): 89-99. [35] 郜捷, 宋洁, 王剑晓, 等. 支撑中国能源安全的电氢耦合系统形态与关键技术[J]. 电力系统自动化, 2023, 47(19): 1-15. Gao Jie, Song Jie, Wang Jianxiao, et al.Form and key technologies of integrated electricity-hydrogen system supporting energy security in China[J]. Automation of Electric Power Systems, 2023, 47(19): 1-15. [36] 张昊天, 韦钢, 袁洪涛, 等. 考虑氢-电混合储能的直流配电网优化调度[J]. 电力系统自动化, 2021, 45(14): 72-81. Zhang Haotian, Wei Gang, Yuan Hongtao, et al.Optimal scheduling of DC distribution network considering hydrogen-power hybrid energy storage[J]. Automation of Electric Power Systems, 2021, 45(14): 72-81. [37] 朱俊澎, 袁越, 吴涵. 考虑移动氢储能和高密度可再生能源的主动配电网优化调度[J]. 电力自动化设备, 2020, 40(12): 42-50. Zhu Junpeng, Yuan Yue, Wu Han.Optimal dispatch of active distribution network considering mobile hydrogen energy storage and high-density renewable energy sources[J]. Electric Power Automation Equipment, 2020, 40(12): 42-50. [38] 蒙军, 任洲洋, 王皓. 氢能交互下的多区域电氢综合能源系统可靠性提升策略[J]. 电工技术学报, 2024, 39(16): 5011-5027. Meng Jun, Ren Zhouyang, Wang Hao.Reliability improvement strategies of multi-region electricity-hydrogen integrated energy systems considering hydrogen interaction between different regions[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5011-5027. [39] Kayacık S E, Schrotenboer A H, Ursavas E, et al.Towards low-carbon power networks: optimal location and sizing of renewable energy sources and hydrogen storage[J]. Sustainable Energy, Grids and Networks, 2024, 38: 101394. [40] 郑可昕, 高啸天, 范永春, 等. 支撑绿氢大规模发展的氨、甲醇技术对比及应用发展研究[J]. 南方能源建设, 2023, 10(3): 63-73. Zheng Kexin, Gao Xiaotian, Fan Yongchun, et al.Comparison and application prospects of ammonia and methanol technologies supporting large-scale development of green hydrogen energy[J]. Southern Energy Construction, 2023, 10(3): 63-73. [41] 张鹏成, 徐箭, 柯德平, 等. 氢能驱动下钢铁园区能源系统优化配置[J]. 电力系统自动化, 2022, 46(14): 1-10. Zhang Pengcheng, Xu Jian, Ke Deping, et al.Optimal configuration of energy system in iron and steel park driven by hydrogen energy[J]. Automation of Electric Power Systems, 2022, 46(14): 1-10. [42] 张鹏成, 徐箭, 孙元章, 等. 氢能驱动下钢铁园区能源系统低碳发展模式[J]. 电力系统自动化, 2022, 46(13): 10-20. Zhang Pengcheng, Xu Jian, Sun Yuanzhang, et al.Low-carbon development mode for energy system of iron and steel park driven by hydrogen energy[J]. Automation of Electric Power Systems, 2022, 46(13): 10-20. [43] 霍天晴, 刘家璇, 李东, 等. 平准化成本的加氢站供氢路径分析比较研究[J]. 西安交通大学学报, 2024, 58(2): 79-90. Huo Tianqing, Liu Jiaxuan, Li Dong, et al.Analysis and comparison of hydrogen supply paths of hydrogen refueling station based on the levelized cost[J]. Journal of Xi’an Jiaotong University, 2024, 58(2): 79-90. [44] 孔令国, 陈钥含, 万燕鸣, 等. 计及调峰辅助服务的风电场/群经济制氢容量计算[J]. 电工技术学报, 2023, 38(16): 4406-4420. Kong Lingguo, Chen Yuehan, Wan Yanming, et al.Calculation of economics of power-to-gas capacity for wind farms/clusters with peak regulation auxiliary service response[J]. Transactions of China Electro-technical Society, 2023, 38(16): 4406-4420. [45] 赵磊. 全疆首个绿氢示范项目交易电量突破1亿千瓦时[EB/OL]. (2024-03-20)[2024-08-14]. http://xj.news.cn/zt/2024-03/20/c_1130092162.htm. [46] 顾玖, 王晨磊, 解大. 电力市场环境下的电-氢一体化站优化运行[J]. 电力科学与技术学报, 2022, 37(1): 130-139. Gu Jiu, Wang Chenlei, Xie Da.Research on optimal operation of electricity-hydrogen integrated station in electricity market environment[J]. Journal of Electric Power Science and Technology, 2022, 37(1): 130-139. [47] 于丽芳, 李燕雪, 朱明晞, 等. 电-氢-碳综合能源系统协同经济调度[J]. 电力需求侧管理, 2022, 24(6): 63-69. Yu Lifang, Li Yanxue, Zhu Mingxi, et al.Coordinated economic dispatch of electricity-hydrogen-carbon integrated energy system[J]. Power Demand Side Management, 2022, 24(6): 63-69. [48] 杜易达, 王迩, 谭忠富, 等. 电-碳-气-绿证市场耦合下的电氢耦合系统运行优化研究[J]. 电网技术, 2023, 47(8): 3121-3135. Du Yida, Wang Er, Tan Zhongfu, et al.Operation optimization of electro-hydrogen coupling system under coupling of electricity, carbon, gas and green card market[J]. Power System Technology, 2023, 47(8): 3121-3135. [49] 安江涛, 刘卫亮, 林永君, 等. 绿证-碳交易融合机制下含氢综合能源系统优化调度[J]. 太阳能学报, 2024, 45(8): 104-114. An Jiangtao, Liu Weiliang, Lin Yongjun, et al.Optimal scheduling of hydrogen-containing integrated energy system under the green certificate-carbon trading integration mechanism[J]. Acta Energiae Solaris Sinica, 2024, 45(8): 104-114. [50] 崔杨, 沈卓, 王铮, 等. 考虑绿证-碳排等价交互机制的区域综合能源系统绿色调度[J]. 中国电机工程学报, 2023, 43(12): 4508-4517. Cui Yang, Shen Zhuo, Wang Zheng, et al.Green dispatch of regional integrated energy system considering green certificate-carbon emission equivalent interaction mechanism[J]. Proceedings of the CSEE, 2023, 43(12): 4508-4517. [51] 马汀山, 王妍, 吕凯, 等. “双碳” 目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(增刊1): 136-148. Ma Tingshan, Wang Yan, Lü Kai, et al.Research progress on flexibility transformation technology of coupled energy storage for thermal power units under the “dual-carbon” goal[J]. Proceedings of the CSEE, 2022, 42(S1): 136-148. [52] 国家发展改革委办公厅, 国家能源局综合司. 关于进一步推动新型储能参与电力市场和调度运用的通知[EB/OL]. (2022-05-24)[2024-08-14]. https://www.gov.cn/zhengce/zhengceku/2022-06/07/content_5694423.htm. [53] ENTSO-E.Potential of P2H2 technologies to provide system services[R]. Brussels: European Network of Transmission System Operators for Electricity, 2023. [54] 任畅翔, 刘娇, 谭杰仁. 源网荷侧新型储能商业模式及成本回收机制研究[J]. 南方能源建设, 2022, 9(4): 94-102. Ren Changxiang, Liu Jiao, Tan Jieren.Research on the business model and cost recovery mechanism of new energy storage on source-grid-load side of power system[J]. Southern Energy Construction, 2022, 9(4): 94-102. [55] 陈熙, 程瑜, 丁肇豪. 低碳驱动的长时储能容量补偿机制[J]. 电力系统自动化, 2023, 47(7): 32-41. Chen Xi, Cheng Yu, Ding Zhaohao.Low-carbon-driven capacity payment mechanism of long-term energy storage[J]. Automation of Electric Power Systems, 2023, 47(7): 32-41. [56] 许高秀, 邓晖, 房乐, 等. 考虑需求侧灵活性资源参与的国内外电力辅助服务市场机制研究综述[J]. 浙江电力, 2022, 41(9): 3-13. Xu Gaoxiu, Deng Hui, Fang Le, et al.A review of ancillary service market mechanism study at home and abroad considering flexible resources on demand side[J]. Zhejiang Electric Power, 2022, 41(9): 3-13. [57] 德恒律师事务所. 氢能如何与碳交易市场同频共振?[EB/OL]. (2022-03-04)[2024-08-14]. https://www.dehenglaw.com/CN/tansuocontent/0008/024049/7.aspx?MID=0902&AID=. [58] 北京市经济和信息化局. 《北京市氢能产业发展实施方案(2021—2025年)》[EB/OL]. (2021-08-16)[2024-08-14]. https://www.beijing.gov.cn/zhengce/zhengcefagui/202108/t20210817_2469561.html.