Behavior Model of High-Voltage SiC MOSFET’s Short-Circuit Fault Based on Device Physics
Wu Yifan1, Li Chi1, Xu Yunfei2, Zheng Zedong1, Hao Yi2
1. State Key Laboratory of Power System Operation and Control Tsinghua University Beijing 100084 China; 2. State Grid Smart Grid Research Institute Co. Ltd Beijing 102209 China
Abstract:The short-circuit ruggedness of silicon carbide (SiC) MOSFETs represents a significant challenge that impedes their widespread adoption in high-voltage applications. Developing effective short-circuit protection strategies in domestic high-voltage SiC MOSFETs is hampered by a lack of robust technical expertise and empirical experience. Furthermore, the absence of fast and accurate simulation models presents a fundamental obstacle to advancing research on the application of domestic high-voltage SiC MOSFETs. Traditional behavioral models focus on fitting these devices’ static and dynamic characteristics but fail to simulate fault conditions adequately. Recently, several models have been proposed for short-circuit scenarios. However, these models exhibit limitations, including low adaptability for high-voltage devices, insufficient universality, and inefficient parameter extraction. This paper introduces a behavioral model for high-voltage SiC MOSFETs, which incorporates practical physical characteristics. The proposed model can accurately simulate the device's behavior-such as voltage and current dynamics-throughout a short-circuit fault event. The behavioral model comprises five primary components: a controlled current source (ICH) for calculating the current flowing through the channel, a controlled current source (ILEAK) for assessing the leakage current under high junction temperature conditions, a diode (D) representing the device's body diode, capacitors (CGS, CGD and CDS) for the junction capacitances, and a resistor (RD) denoting the total resistance of the drift layer and JFET region of the device. In high-voltage devices, the resistances associated with the drift layer and JFET region constitute a significantly large proportion of the total on-resistance compared to devices rated below 1.2 kV. The increased resistance markedly influences the device's behavior during short-circuit faults. Consequently, RD is carefully calculated based on the practical structure of high-voltage SiC MOSFETs and the current path during short-circuit events at the cell level. The model’s parameters are categorized into four types, each with detailed extraction methods. Furthermore, key physical parameters that are challenging to measure-such as intrinsic carrier concentration (ni), threshold voltage (VT), and carrier mobility (μ)-are calculated based on semiconductor physics principles. The strong physical significance of the model's components and the parameters enhances the universality and portability of the proposed model. A 6.5 kV/400 A SiC MOSFET produced by the State Grid Smart Grid Research Institute Co. Ltd is modeled. The model is developed, and short-circuit test simulations are conducted using Matlab/Simulink. A short-circuit test experimental platform is established for the selected device. Short-circuit tests are performed under a short-circuit duration (tSC) of 2.5 μs and DC-bus voltages (VDC) of 3 300 V and 2 470 V. The high consistency between the simulated and experimental waveforms indicates that the presented model effectively simulates the behavior of high-voltage SiC MOSFETs during short-circuit faults. The relative errors of the current rise rate and peak short-circuit current are less than 2.20% and 0.83%. Additionally, the relative errors of simulated peak currents with the low-voltage models are 7.58% and 5.89% under VDC=3 300 V and VDC=2 470 V, respectively, seven times those with the proposed model.
[1] Kimoto T.Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 040103. [2] 盛况, 任娜, 徐弘毅. 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40(6): 1741-1753. Sheng Kuang, Ren Na, Xu Hongyi.A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1753. [3] 刘基业, 郑泽东, 李驰, 等. 电压自平衡碳化硅MOSFET间接串联功率模块[J]. 电工技术学报, 2023, 38(7): 1900-1909. Liu Jiye, Zheng Zedong, Li Chi, et al.An indirect series-connected SiC MOSFET power module with voltage self-balance[J]. Transactions of China Elec- trotechnical Society, 2023, 38(7): 1900-1909. [4] Zhang Lei, Yuan Xibo, Wu Xiaojie, et al.Perfor- mance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1181-1196. [5] 朱小全, 刘康, 叶开文, 等. 基于SiC器件的隔离双向混合型LLC谐振变换器[J]. 电工技术学报, 2022, 37(16): 4143-4154. Zhu Xiaoquan, Liu Kang, Ye Kaiwen, et al.Isolated bidirectional hybrid LLC converter based on SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4143-4154. [6] 任鹏, 涂春鸣, 侯玉超, 等. 基于Si和SiC器件的混合型级联多电平变换器及其调控优化方法[J]. 电工技术学报, 2023, 38(18): 5017-5028. Ren Peng, Tu Chunming, Hou Yuchao, et al.Research on a hybrid cascaded multilevel converter based on Si and SiC device and its control optimization method[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 5017-5028. [7] 黄天琪, 刘永前. 基于电-热-结构耦合分析的SiC MOSFET可靠性研究[J]. 电气技术, 2024, 25(8): 27-34. Huang Tianqi, Liu Yongqian.Reliability study of SiC MOSFET based on electro-thermo-structural coupling analysis[J]. Electrical Engineering, 2024, 25(8): 27-34. [8] Li Haoran, Zhang Zhiliang, Wang Shengdong, et al.A 300-kHz 6.6-kW SiC bidirectional LLC onboard charger[J]. IEEE Transactions on Industrial Elec- tronics, 2020, 67(2): 1435-1445. [9] 张栋, 范涛, 温旭辉, 等. 电动汽车用高功率密度碳化硅电机控制器研究[J]. 中国电机工程学报, 2019, 39(19): 5624-5634, 5890. Zhang Dong, Fan Tao, Wen Xuhui, et al.Research on high power density SiC motor drive controller[J]. Proceedings of the CSEE, 2019, 39(19): 5624-5634, 5890. [10] 付永升, 任海鹏, 李翰山, 等. SiC-MOSFET与Si-IGBT混合开关车载双向充电器中线桥臂设计及控制[J]. 中国电机工程学报, 2020, 40(19): 6330-6345. Fu Yongsheng, Ren Haipeng, Li Hanshan, et al.Neutral leg design and control of electric vehicle on-board bidirectional charger based on SiC- MOSFET and Si-IGBT hybrid devices[J]. Pro- ceedings of the CSEE, 2020, 40(19): 6330-6345. [11] 胡嘉豪, 王英伦, 代豪豪, 等. SiC MOSFET器件栅氧可靠性研究综述[J]. 电源学报, 2024, 22(4): 1-11. Hu Jiahao, Wang Yinglun, Dai Haohao, et al.Review on gate oxide reliability of SiC MOSFET devices[J]. Journal of Power Supply, 2024, 22(4): 1-11. [12] 薄强, 王丽芳, 张玉旺, 等. 应用于无线充电系统的SiC MOSFET关断特性分析[J]. 电力系统自动化, 2021, 45(15): 150-157. Bo Qiang, Wang Lifang, Zhang Yuwang, et al.Analysis of turn-off characteristics of SiC MOSFET applied to wireless charging system[J]. Automation of Electric Power Systems, 2021, 45(15): 150-157. [13] 金晓行, 李士颜, 田丽欣, 等. 6.5kV高压全SiC功率MOSFET模块研制[J]. 中国电机工程学报, 2020, 40(6): 1753-1759. Jin Xiaoxing, Li Shiyan, Tian Lixin, et al.Fabrication of 6.5kV high-voltage full SiC power MOSFET modules[J]. Proceedings of the CSEE, 2020, 40(6): 1753-1759. [14] Ceccarelli L, Reigosa P D, Iannuzzo F, et al.A survey of SiC power MOSFETs short-circuit robustness and failure mode analysis[J]. Microelectronics Reliability, 2017, 76: 272-276. [15] Sun Keyao, Wang Jun, Burgos R, et al.Design, analysis, and discussion of short circuit and overload gate-driver dual-protection scheme for 1.2-kV, 400-a SiC MOSFET modules[J]. IEEE Transactions on Power Electronics, 2020, 35(3): 3054-3068. [16] 王占扩, 童朝南, 黄伟超. SiC MOSFET短路特性及过流保护研究[J]. 中国电机工程学报, 2020, 40(18): 5751-5760. Wang Zhankuo, Tong Chaonan, Huang Weichao.Research on short-circuit characteristics and over- current protection of SiC MOSFET[J]. Proceedings of the CSEE, 2020, 40(18): 5751-5760. [17] 文阳, 杨媛, 宁红英, 等. SiC MOSFET短路保护技术综述[J]. 电工技术学报, 2022, 37(10): 2538-2548. Wen Yang, Yang Yuan, Ning Hongying, et al.Review on short-circuit protection technology of SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2538-2548. [18] Awwad A E, Dieckerhoff S.Short-circuit evaluation and overcurrent protection for SiC power MOSFETs[C]//2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), Geneva, Switzerland, 2015: 1-9. [19] 李鑫, 罗毅飞, 史泽南, 等. 一种基于物理的SiC MOSFET改进电路模型[J]. 电工技术学报, 2022, 37(20): 5214-5226 . Li Xin, Luo Yifei, Shi Zenan, et al.An improved physics-based circuit model for SiC MOSFET[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5214-5226. [20] Stark R, Tsibizov A, Nain N, et al.Accuracy of three interterminal capacitance models for SiC power MOSFETs under fast switching[J]. IEEE Transactions on Power Electronics, 2021, 36(8): 9398-9410. [21] Tian Lixin, Yang Fei, Niu Xiping, et al.Development and analysis of 6500V SiC power MOSFET[C]//2021 18th China International Forum on Solid State Lighting & 2021 7th International Forum on Wide Bandgap Semiconductors (SSLChina: IFWS), Shenzhen, China, 2021: 6-9. [22] Romano G, Fayyaz A, Riccio M, et al.A com- prehensive study of short-circuit ruggedness of silicon carbide power MOSFETs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 978-987. [23] Li Hong, Wang Yuting, Zhao Xingran, et al.A junction temperature-based PSpice short-circuit model of SiC MOSFET considering leakage current[C]//IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019: 5095-5100. [24] Dumollard Y, Batista E, Dienot J M, et al.Equation-based modeling of the electrothermal behavior of a SiC MOSFET chip during a short circuit[C]//2020 IEEE Latin America Electron Devices Conference (LAEDC), San Jose, Costa Rica, 2020: 1-4. [25] Xiang Pengfei, Hao Ruixiang, You Xiaojie, et al.Analytical modeling of SiC MOSFETs short-circuit behavior considering parasitic parameters[C]//2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020: 2835-2841. [26] 周郁明, 蒋保国, 刘航志, 等. 包含SiC/SiO2界面电荷的SiC MOSFET的SPICE模型[J]. 中国电机工程学报, 2019, 39(19): 5604-5612, 5888. Zhou Yuming, Jiang Baoguo, Liu Hangzhi, et al.SPICE model of SiC MOSFET including the trapped charge at SiC/SiO2 interface[J]. Proceedings of the CSEE, 2019, 39(19): 5604-5612, 5888. [27] Riccio M, D’Alessandro V, Romano G, et al. A temperature-dependent SPICE model of SiC power MOSFETs for within and out-of-SOA simulations[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 8020-8029. [28] Duan Zhuolin, Fan Tao, Wen Xuhui, et al.Improved SiC power MOSFET model considering nonlinear junction capacitances[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2509-2517. [29] Hsu F J, Hung C C, Chu Kuoting, et al.A dynamic switching response improved SPICE model for SiC MOSFET with non-linear parasitic capacitance[C]//2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Suita, Japan, 2020: 1-4. [30] (美)巴利加 B J. 先进的高压大功率器件: 原理、特性和应用[M]. 于坤山, 等译. 北京: 机械工业出版社, 2015. [31] (美)尼曼 D A. 半导体物理与器件[M]. 赵毅强, 姚素英, 史再峰, 等译. 北京: 电子工业出版社, 2018. [32] Wang Zhiqiang, Shi Xiaojie, Tolbert L M, et al.Temperature-dependent short-circuit capability of silicon carbide power MOSFETs[J]. IEEE Transa- ctions on Power Electronics, 2016, 31(2): 1555-1566. [33] Zhao Xianlong, Li Tao, Liang Xiaobin, et al.Investigation on SiC MOSFET’s avalanche and short-circuit failure mechanism[C]//2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 2022: 3916-3921. [34] (俄)莱温施泰因 M E, (俄)鲁缅采夫 S L. 先进半导体材料性能与数据手册[M]. (美)舒尔S M, 杨树人, 殷景志, 译. 北京: 化学工业出版社, 2003. [35] (日)木本恒暢, (美)库珀J A. 碳化硅技术基本原理——生长、表征、器件和应用[M]. 夏经华, 潘艳, 杨霏, 等译. 北京: 机械工业出版社, 2018. [36] Arnold E, Alok D.Effect of interface states on electron transport in 4H-SiC inversion layers[J]. IEEE Transactions on Electron Devices, 2001, 48(9): 1870-1877. [37] Masetti G, Severi M, Solmi S.Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon[J]. IEEE Transactions on Electron Devices, 1983, 30(7): 764-769. [38] Pérez-Tomás A, Brosselard P, Godignon P, et al.Field-effect mobility temperature modeling of 4H-SiC metal-oxide-semiconductor transistors[J]. Journal of Applied Physics, 2006, 100(11): 114508. [39] Zeng Y A, White M H, Das M K.Electron transport modeling in the inversion layers of 4H and 6H-SiC MOSFETs on implanted regions[J]. Solid-State Electronics, 2005, 49(6): 1017-1028. [40] Tilak V, Matocha K, Dunne G.Electron-scattering mechanisms in heavily doped silicon carbide MOSFET inversion layers[J]. IEEE Transactions on Electron Devices, 2007, 54(11): 2823-2829. [41] Dhar S, Haney S, Cheng L, et al.Inversion layer carrier concentration and mobility in 4H-SiC metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2010, 108(5): 054509. [42] Powell S K, Goldsman N, McGarrity J M, et al. Physics-based numerical modeling and characteri- zation of 6H-silicon-carbide metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2002, 92(7): 4053-4061. [43] Arnold E.Charge-sheet model for silicon carbide inversion layers[J]. IEEE Transactions on Electron Devices, 1999, 46(3): 497-503. [44] Licciardo G D, Di Benedetto L, Bellone S.Modeling of the SiO2/SiC interface-trapped charge as a function of the surface potential in 4H-SiC vertical-DMOSFET[J]. IEEE Transactions on Electron Devices, 2016, 63(4): 1783-1787. [45] Haasmann D, Dimitrijev S.Energy position of the active near-interface traps in metal-oxide- semi- conductor field-effect transistors on 4H-SiC[J]. Applied Physics Letters, 2013, 103(11): 113506.