A Review of AI-Based Computational Modelling Studies of Electromagnetic Fields
Jin Liang1,2, Su Haozhan1,2, Guo Shaonan1, Song Juheng1, Yang Qingxin1
1. State Key Laboratory of Intelligence Power Distribution and System Equipment Hebei University of Technology Tianjin 300401 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300401 China
Abstract:The rapidly developing field of artificial intelligence (AI) has made significant advancements in areas such as image processing, language, decision-making, and diagnostics, providing new methods for solving complex problems. The increasing intelligence of electrical equipment, combined with the coupling of strong and weak electrical fields, has led to the emergence of multi-scale, multi-physical field coupling and nonlinear problems in electromagnetic fields. High-precision numerical modeling and optimization are increasingly challenging. Therefore, this paper combines recent research outcomes from the author’s team to introduce deep learning methods for solving typical interdisciplinary problems, such as data-driven modeling, physics-driven PDE solving, and knowledge-embedding modeling. In particular, the paper discusses the current state of intelligent modeling for complex electromagnetic field problems driven by both data and knowledge. It also offers perspectives on the scientific challenges and important future directions in the research and engineering implementation of electromagnetic field intelligent modeling. In the area of data-driven modeling, the paper explores its application in the performance analysis and optimization of electrical equipment. The discussion is divided into three parts: performance parameter calculation, electromagnetic thermal field prediction, and knowledge discovery modeling. By combining numerical simulation and experimental data, deep learning algorithms can mine potential knowledge from the data, enabling rapid computation of one-dimensional performance and two- and three-dimensional fields. This approach allows for real-time simulation of local performance, global performance, and micro characteristics. Regarding physics-driven partial differential equation (PDE) solving, the paper discusses two main research directions: knowledge-embedding regularization methods and designing machine learning model structures based on physical meaning. Constructing loss functions or network structures that align with physical laws makesit possible to solve PDEs without relying on sample data. This method is beneficial when physical conditions are incomplete and sample data is scarce. Using AI to solve physical equations helps overcome traditional bottlenecks, improving computational efficiency and expanding application scope. In the area of knowledge-embedding modeling, the paper discusses how to implicitly integrate domain knowledge, mainly through multi-fidelity models and neural network operator methods, to improve the precision and efficiency of computational models. By embedding the knowledge inherent in high-precision samples into the model, high-precision forward and inverse problem models can be built. As data accumulates, the model's accuracy and generalization ability will improve. This method fully utilizes the advantages of deep learning and integrates basic physical theories. As data grows, knowledge-embedding methods are expected to be crucial in solving more complex electromagnetic field problems and enhancing overall simulation outcomes. In conclusion, the fusion of AI and knowledge has become a significant trend in the development of numerical simulation. Integrating data-driven, physics-driven, and knowledge-embedding methods has accelerated the advancement of electromagnetic field modeling and optimization. These methods have improved simulation accuracy and expanded the application range of numerical simulations for complex electromagnetic field problems. However, the exploration of AI in numerical simulation is still in its early stages, facing challenges such as insufficient model generalization, computational efficiency improvement, and physical constraint integration. Future research should focus on addressing these issues to promote the broader application and development of AI in the field of electromagnetic field numerical simulation.
金亮, 苏浩展, 郭劭男, 宋居恒, 杨庆新. 基于AI的电磁场计算建模研究综述[J]. 电工技术学报, 2025, 40(10): 3013-3029.
Jin Liang, Su Haozhan, Guo Shaonan, Song Juheng, Yang Qingxin. A Review of AI-Based Computational Modelling Studies of Electromagnetic Fields. Transactions of China Electrotechnical Society, 2025, 40(10): 3013-3029.
[1] Tang Wei, Shan Tao, Dang Xunwang, et al.Study on a Poisson’s equation solver based on deep learning technique[C]//2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, China, 2017: 1-3. [2] Khan A, Ghorbanian V, Lowther D.Deep learning for magnetic field estimation[J]. IEEE Transactions on Magnetics, 2019, 55(6): 7202304. [3] Khan A, Mohammadi M H, Ghorbanian V, et al.Efficiency map prediction of motor drives using deep learning[J]. IEEE Transactions on Magnetics, 2020, 56(3): 7511504. [4] He Miao, He D.Deep learning based approach for bearing fault diagnosis[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 3057-3065. [5] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016: 770-778. [6] Vaswani A, Shazeer N, Parmar N, et al.Attention is all you need[C]//31st Conference on Neural Infor- mation Processing Systems, Long Beach California, USA, 2017: 1-15. [7] Li Chen, Tan Yusong, Chen Wei, et al.ANU-Net: Attention-based nested U-Net to exploit full reso- lution features for medical image segmentation[J]. Computers & Graphics, 2020, 90: 11-20. [8] Ho J, Jain A, Abbeel P. denoising diffusion pro- babilistic models[J/OL]. https://doi.org/10.48550/arXiv.2006.11239. [9] 李峰, 王琦, 胡健雄, 等. 数据与知识联合驱动方法研究进展及其在电力系统中应用展望[J]. 中国电机工程学报, 2021, 41(13): 4377-4390. Li Feng, Wang Qi, Hu Jianxiong, et al.Combined data-driven and knowledge-driven methodology research advances and its applied prospect in power systems[J]. Proceedings of the CSEE, 2021, 41(13): 4377-4390. [10] 韩笑, 郭剑波, 蒲天骄, 等. 电力人工智能技术理论基础与发展展望(一): 假设分析与应用范式[J]. 中国电机工程学报, 2023, 43(8): 2877-2891. Han Xiao, Guo Jianbo, Pu Tianjiao, et al.Theoretical foundation and directions of electric power artificial intelligence (Ⅰ): hypothesis analysis and application paradigm[J]. Proceedings of the CSEE, 2023, 43(8): 2877-2891. [11] Khodayar M, Liu Guangyi, Wang Jianhui, et al.Deep learning in power systems research: a review[J]. CSEE Journal of Power and Energy Systems, 2021, 7(2): 209-220. [12] 唐文虎, 牛哲文, 赵柏宁, 等. 数据驱动的人工智能技术在电力设备状态分析中的研究与应用[J]. 高电压技术, 2020, 46(9): 2985-2999. Tang Wenhu, Niu Zhewen, Zhao Boning, et al.Research and application of data-driven artificial intelligence technology for condition analysis of power equipment[J]. High Voltage Engineering, 2020, 46(9): 2985-2999. [13] Sheng Jie, Zhang Kun, Wang Xihui, et al.Application and prospect of deep learning in new energy power system[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2), Taiyuan, China, 2021: 461-465. [14] 朱振威, 邱景义, 王莉, 等. 人工智能在锂离子电池研发中的应用(英文)[J]. 电化学, 2022, 28(12): 6-27. Zhu Zhen wei, Qiu Jing yi, Wang Li, et al. application of artificial intelligence to lithium-ion battery research and development[J]. Journal of Electro- chemistry, 2022, 28(12): 6-27. [15] Lombardo T, Duquesnoy M, El-Bouysidy H, et al.Artificial intelligence applied to battery research: hype or reality?[J]. Chemical Reviews, 2022, 122(12): 10899-10969. [16] Zhao Jingying, Guo Hai, Wang Likun, et al.Computer modeling of the eddy current losses of metal fasteners in rotor slots of a large nuclear steam turbine generator based on finite-element method and deep Gaussian process regression[J]. IEEE Transactions on Industrial Electronics, 2020, 67(7): 5349-5359. [17] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119. [18] 金亮, 王飞, 杨庆新, 等. 永磁同步电机性能分析的典型深度学习模型与训练方法[J]. 电工技术学报, 2018, 33(增刊1): 41-48. Jin Liang, Wang Fei, Yang Qingxin, et al.Typical deep learning model and training method for perfor- mance analysis of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 41-48. [19] Dong Rongzhi, Dan Yabo, Li Xiang, et al.Inverse design of composite metal oxide optical materials based on deep transfer learning and global opti- mization[J]. Computational Materials Science, 2021, 188: 110166. [20] 金亮, 闫银刚, 杨庆新, 等. 小样本条件下永磁同步电机深度迁移学习性能预测方法[J]. 电工技术学报, 2023, 38(18): 4921-4931. Jin Liang, Yan Yingang, Yang Qingxin, et al.Prediction method of deep transfer learning perfor- mance of permanent magnet synchronous motor under the condition of few-shot[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4921-4931. [21] Jin Liang, Gong Dexin, Yan Yingang, et al.Armature electromagnetic force extrapolation prediction method for electromagnetic railgun at high speed[J]. Applied Sciences, 2023, 13(6): 3819. [22] Shan Tao, Tang Wei, Dang Xunwang, et al.Study on a fast solver for Poisson’s equation based on deep learning technique[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(9): 6725-6733. [23] 吴鑫, 张艳丽, 王振, 等. 基于深度学习的电工钢片磁畴磁化过程预测与特征量提取[J]. 电工技术学报, 2023, 38(9): 2289-2298. Wu Xin, Zhang Yanli, Wang Zhen, et al.prediction of magnetic domains magnetization process and feature extraction of electrical steel sheet based on deep learning[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2289-2298. [24] 黄俊杰, 朱剑琴, 程泽源. 基于卷积神经网络双层壁三维热应力预测方法[J]. 航空动力学报, 2023, 38(7): 1658-1667. Huang Junjie, Zhu Jianqin, Cheng Zeyuan.Three- dimensional thermal stress prediction method in double-wall structure using convolutional neural networks[J]. Journal of Aerospace Power, 2023, 38(7): 1658-1667. [25] Li Shilin, Wang Gang, Di Yuelan, et al.A physics- informed neural network framework to predict 3D temperature field without labeled data in process of laser metal deposition[J]. Engineering Applications of Artificial Intelligence, 2023, 120: 105908. [26] Gong Ruohan, Tang Zuqi.Investigation of con- volutional neural network U-net under small datasets in transformer magneto-thermal coupled analysis[J]. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2020, 39(4): 959-970. [27] 李耀仟, 李才子, 刘瑞强, 等. 面向手术器械语义分割的半监督时空Transformer网络[J]. 软件学报, 2022, 33(4): 1501-1515. Li Yaoqian, Li Caizi, Liu Ruiqiang, et al.Semi- supervised spatiotemporal Transformer networks for semantic segmentation of surgical instrument[J]. Journal of Software, 2022, 33(4): 1501-1515. [28] Lagaris I E, Likas A, Fotiadis D I.Artificial neural networks for solving ordinary and partial differential equations[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 987-1000. [29] Raissi M, Perdikaris P, Karniadakis G E.Physics- informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. [30] 张宇娇, 孙宏达, 赵志涛, 等. 基于物理信息神经网络的电磁场计算方法[J]. 电工技术学报, 2024, 39(17): 5251-5261. Zhang Yujiao, Sun Hongda, Zhao Zhitao, et al.Electromagnetic field calculation method based on physical informed neural network[J]. Transactions of China Electrotechnical Society, 2024, 39(17): 5251-5261. [31] 任富强, 张鸿儒, 康朝阳, 等. 高频激励下变压器绕组梯形等效网络参数辨识方法研究[J]. 中国电机工程学报, 2023, 43(11): 4463-4473. Ren Fuqiang, Zhang Hongru, Kang Zhaoyang, et al.Ladder network parameter identification of trans- former winding under high-frequency excitation[J]. Proceedings of the CSEE, 2023, 43(11): 4463-4473. [32] 吴春, 赵宇纬, 孙明轩. 采用测量电压的永磁同步电机多参数在线辨识[J]. 中国电机工程学报, 2020, 40(13): 4329-4340. Wu Chun, Zhao Yuwei, Sun Mingxuan.Multi- parameter online identification for permanent magnet synchronous machines using voltage measurements[J]. Proceedings of the CSEE, 2020, 40(13): 4329-4340. [33] 吴春, 郑露华, 支恩. 基于三角函数正交特性的永磁伺服系统机械参数辨识方法[J]. 中国电机工程学报, 2022, 42(4): 1617-1625. Wu Chun, Zheng Luhua, Zhi En.Mechanical parameter identification of permanent magnet servo systems based on orthogonality of trigonometric functions[J]. Proceedings of the CSEE, 2022, 42(4): 1617-1625. [34] 金亮, 祝登锋, 杨庆新, 等. 超高压电抗器电感计算灰箱模型与优化[J]. 电工技术学报, 2022, 37(23): 6093-6103. Jin Liang, Zhu Dengfeng, Yang Qingxin, et al.Grey box model and optimization for inductance calcu- lation of EHV reactors[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6093-6103. [35] Brunton S L, Proctor J L, Kutz J N.Discovering governing equations from data by sparse identi- fication of nonlinear dynamical systems[J]. Pro- ceedings of the National Academy of Sciences of the United States of America, 2016, 113(15): 3932-3937. [36] Rudy S H, Brunton S L, Proctor J L, et al.Data-driven discovery of partial differential equations[J]. Science Advances, 2017, 3(4): e1602614. [37] Rudy S, Alla A, Brunton S L, et al.Data-driven identification of parametric partial differential equations[J]. SIAM Journal on Applied Dynamical Systems, 2019, 18(2): 643-660. [38] Chen Zhao, Liu Yang, Sun Hao.Physics-informed learning of governing equations from scarce data[J]. Nature Communications, 2021, 12(1): 6136. [39] Long Zichao, Lu Yiping, Ma Xianzhong, et al.PDE- Net: learning PDEs from data[C]//International Conference on Machine Learning, Stockholm, Sweden, 2018: 3208-3216. [40] Long Zichao, Lu Yiping, Dong Bin.PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network[J]. Journal of Computational Physics, 2019, 399: 108925. [41] Xu Hao, Chang Haibin, Zhang Dongxiao.DLGA-PDE: Discovery of PDEs with incomplete candidate library via combination of deep learning and genetic algorithm[J]. Journal of Computational Physics, 2020, 418: 109584. [42] Chen Yuntian, Luo Yingtao, Liu Qiang, et al.Symbolic genetic algorithm for discovering open- form partial differential equations (SGA-PDE)[J]. Physical Review Research, 2022, 4(2): 023174. [43] Garcia Inda A J, Huang Shao ying, İmamoğlu N, et al. Physics-coupled neural network magnetic resonance electrical property tomography (MREPT) for con- ductivity reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 3463-3478. [44] 陆至彬, 瞿景辉, 刘桦, 等. 基于物理信息神经网络的传热过程物理场代理模型的构建[J]. 化工学报, 2021, 72(3): 1496-1503. Lu Zhibin, Qu Jinghui, Liu Hua, et al.Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. CIESC Journal, 2021, 72(3): 1496-1503. [45] Khan A, Lowther D A.Physics informed neural networks for electromagnetic analysis[J]. IEEE Transa- ctions on Magnetics, 2022, 58(9): 7500404. [46] Bragone F, Morozovska K, Hilber P, et al.Physics- informed neural networks for modelling power transformer’s dynamic thermal behaviour[J]. Electric Power Systems Research, 2022, 211: 108447. [47] Magill M, Nagel A M, de Haan H W. Neural network solutions to differential equations in nonconvex domains: solving the electric field in the slit-well microfluidic device[J]. Physical Review Research, 2020, 2(3): 033110. [48] 仲林林, 吴冰钰, 吴奇. 基于元学习的气体放电等离子体电子Boltzmann方程数值求解[J]. 电工技术学报, 2024, 39(11): 3457-3466. Zhong Linlin, Wu Bingyu, Wu Qi.Numerical solution of electron Boltzmann equation in gas discharge plasmas based on meta learning[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3457-3466. [49] Sirignano J, Spiliopoulos K.DGM: a deep learning algorithm for solving partial differential equations[J]. Journal of Computational Physics, 2018, 375: 1339-1364. [50] Weinan E, Yu Bing.The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems[J]. Communications in Mathematics and Statistics, 2018, 6(1): 1-12. [51] Zang Yaohua, Bao Gang, Ye Xiaojing, et al.Weak adversarial networks for high-dimensional partial differential equations[J]. Journal of Computational Physics, 2020, 411: 109409. [52] Wang Sifan, Teng Yujun, Perdikaris P.Understanding and mitigating gradient flow pathologies in physics- informed neural networks[J]. SIAM Journal on Scientific Computing, 2021, 43(5): A3055-A3081. [53] Wang Sifan, Yu Xinling, Perdikaris P.When and why PINNs fail to train: a neural tangent kernel perspective[J]. Journal of Computational Physics, 2022, 449: 110768. [54] Sun Luning, Gao Han, Pan Shaowu, et al.Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112732. [55] Sheng Hailong, Yang Chao.PFNN: a penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries[J]. Journal of Computational Physics, 2021, 428: 110085. [56] Chen Yuntian, Huang Dou, Zhang Dongxiao, et al.Theory-guided hard constraint projection (HCP): a knowledge-based data-driven scientific machine learning method[J]. Journal of Computational Physics, 2021, 445: 110624. [57] Dong Bin, Jiang Qingtang, Shen Zuowei.Image restoration: wavelet frame shrinkage, nonlinear evolution PDEs, and beyond[J]. Multiscale Modeling & Simulation, 2017, 15(1): 606-660. [58] Yao Houpu, Gao Yi, Liu Yongming.FEA-Net: a physics-guided data-driven model for efficient mechanical response prediction[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 363: 112892. [59] Rao Chengping, Ren Pu, Wang Qi, et al.Encoding physics to learn reaction-diffusion processes[J]. Nature Machine Intelligence, 2023, 5: 765-779. [60] Ramuhalli P, Udpa L, Udpa S S.Finite-element neural networks for solving differential equations[J]. IEEE Transactions on Neural Networks, 2005, 16(6): 1381-1392. [61] 徐超, 王长龙, 绳慧, 等. 三维磁场计算的有限元神经网络模型[J]. 电工技术学报, 2012, 27(11): 125-132. Xu Chao, Wang Changlong, Sheng Hui, et al.FENN model for 3-D magnetic field calculation[J]. Transa- ctions of China Electrotechnical Society, 2012, 27(11): 125-132. [62] Xu Chao, Wang Changlong, Ji Fengzhu, et al.Finite- element neural network-based solving 3-D differential equations in MFL[J]. IEEE Transactions on Mag- netics, 2012, 48(12): 4747-4756. [63] 苑希超, 王长龙, 纪凤珠, 等. 利用有限元神经网络计算漏磁场方法研究[J]. 兵工学报, 2011, 32(11): 1395-1398. Yuan Xichao, Wang Changlong, Ji Fengzhu, et al.A calculation method of magnetic leakage field based on finite element neural network[J]. Acta Armamentarii, 2011, 32(11): 1395-1398. [64] 李想, 严子铭, 柳占立. 机器学习与计算力学的结合及应用初探[J]. 科学通报, 2019, 64(7): 635-648. Li Xiang, Yan Ziming, Liu Zhanli.Combination and application of machine learning and computational mechanics[J]. Chinese Science Bulletin, 2019, 64(7): 635-648. [65] Chen Yuntian, Zhang Dongxiao.Theory-guided deep- learning for electrical load forecasting (TgDLF) via ensemble long short-term memory[J]. Advances in Applied Energy, 2021, 1: 100004. [66] Viana F A C, Steffen V, Butkewitsch S, et al. Optimization of aircraft structural components by using nature-inspired algorithms and multi-fidelity approximations[J]. Journal of Global Optimization, 2009, 45(3): 427-449. [67] Fernández-Godino M G. Review of multi-fidelity models[J/OL].arXiv.org. 10.48550. [68] Sun Guangyong, Li Guangyao, Zhou Shiwei, et al.Multi-fidelity optimization for sheet metal forming process[J]. Structural and Multidisciplinary Optimi- zation, 2011, 44(1): 111-124. [69] Morozova N, Trias F X, Capdevila R, et al.A CFD- based surrogate model for predicting flow parameters in a ventilated room using sensor readings[J]. Energy and Buildings, 2022, 266: 112146. [70] Bierig C, Chernov A.Approximation of probability density functions by the Multilevel Monte Carlo Maximum Entropy method[J]. Journal of Com- putational Physics, 2016, 314: 661-681. [71] Zheng Qiang, Zhang Jiangjiang, Xu Wenjie, et al.Adaptive multifidelity data assimilation for nonlinear subsurface flow problems[J]. Water Resources Research, 2019, 55(1): 203-217. [72] Raissi M, Karniadakis G. Deep multi-fidelity Gaussian processes[J]. ArXiv e-Prints, 2016: arXiv: 1604.07484. [73] Li Kai, Kou Jiaqing, Zhang Weiwei.Deep learning for multifidelity aerodynamic distribution modeling from experimental and simulation data[J]. AIAA Journal, 2022, 60(7): 4413-4427. [74] Chakraborty S.Transfer learning based multi-fidelity physics informed deep neural network[J]. Journal of Computational Physics, 2021, 426: 109942. [75] Liu Lixue, Song Xueguan, Zhang Chao, et al.GAN- MDF: an enabling method for multifidelity data fusion[J]. IEEE Internet of Things Journal, 2022, 9(15): 13405-13415. [76] Zhang Yunyang, Gong Zhiqiang, Zhou Weien, et al.Multi-fidelity surrogate modeling for temperature field prediction using deep convolution neural net- work[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106354. [77] Xu Yueqi, Song Xueguan, Zhang Chao.Hierarchical regression framework for multi-fidelity modeling[J]. Knowledge-Based Systems, 2021, 212: 106587. [78] Chen Shizhi, Feng Decheng.Multifidelity approach for data-driven prediction models of structural behaviors with limited data[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(12): 1566-1581. [79] Kou Jiaqing, Zhang Weiwei.Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils[J]. Applied Mathematical Modelling, 2019, 76: 832-855. [80] Wang Xu, Kou Jiaqing, Zhang Weiwei.A new dynamic stall prediction framework based on symbiosis of experimental and simulation data[J]. Physics of Fluids, 2021, 33(12): 127119. [81] Meng Xuhui, Karniadakis G E.A composite neural network that learns from multi-fidelity data: Appli- cation to function approximation and inverse PDE problems[J]. Journal of Computational Physics, 2020, 401: 109020. [82] Chen T, Chen H.Universal approximation to non- linear operators by neural networks with arbitrary activation functions and its application to dynamical systems[J]. IEEE Transactions on Neural Networks, 1995, 6(4): 911-917. [83] Lu Lu, Jin Pengzhan, Pang Guofei, et al.Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3: 218-229. [84] Lu Lu, Meng Xuhui, Mao Zhiping, et al.DeepXDE: a deep learning library for solving differential equations[J]. SIAM Review, 2021, 63(1): 208-228. [85] Cai Shengze, Wang Zhicheng, Lu Lu, et al.DeepM& Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks[J]. Journal of Computational Physics, 2021, 436: 110296. [86] Wang Sifan, Wang Hanwen, Perdikaris P. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets[J]. Science Advances, 2021, 7(40): eabi8605. [87] Jin Pengzhan, Meng Shuai, Lu Lu.MIONet: learning multiple-input operators via tensor product[J]. SIAM Journal on Scientific Computing, 2022, 44(6): A3490-A3514. [88] Lu Lu, Meng Xuhui, Cai Shengze, et al.A com- prehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 393: 114778. [89] Lu Lu, Pestourie R, Johnson S G, et al.Multifidelity deep neural operators for efficient learning of partial differential equationswith application to fast inverse design of nanoscale heat transport[J]. Physical Review Research, 2022, 4(2): 023210. [90] Li Zongyi, Kovachki N, Azizzadenesheli K, et al.Fourier neural operator for parametric partial differential equations[EB/OL]. 2020: 2010.08895. https://arxiv.org/abs/2010.08895v3. [91] Ong Y Z, Shen Zuowei, Yang Haizhao.Integral autoencoder network for discretization-invariant learning[J]. Journal of Machine Learning Research, 2022, 23. [92] Tripura T, Chakraborty S.Wavelet Neural Operator for solving parametric partial differential equations in computational mechanics problems[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 404: 115783. [93] Cao Shuhao.Choose a transformer: Fourier or Galerkin[J]. Advances in Neural Information Pro- cessing Systems, 2021, 34: 24924-24940.