电力系统呈现高比例新能源和电力电子设备的发展趋势,大容量远距离的风电外送结构给电网带来了振荡风险。针对直驱风电场(Direct-Drive Wind Forms, DDWFs)经柔性直流输电(Voltage Source Converter based High Voltage Direct Current, VSC-HVDC)外送系统存在的振荡问题,其内部环节间交互作用对系统稳定特性的影响尚未明确。本文首先建立互联系统的小信号模型,通过参与因子确定各模态的主导模块及引发振荡的关键因素。在此基础上,建立考虑带宽约束条件的阻抗模型,解析系统间交互作用产生振荡的机理。最后采用开环传递函数因子分解法将阻抗模型转化为控制器因子相乘的形式,推导出可以显式表述控制环节交互作用本质的系统阻抗解析表达式,进而揭示风机锁相环、各控制环节与柔直控制间的交互作用对次同步及中频振荡的失稳机理;同时分析有功功率以及主电路参数对控制环节交互作用的影响效果,并利用PSCAD/EMTDC仿真验证阻抗模型及机理分析的正确性。
The power system shows the development trend of high proportion of new energy and power electronic equipment, and the large-capacity long-distance wind power transmission structure brings the risk of oscillation to the power grid. With the rapid expansion of wind power installed capacity and project scale, as well as the integration of VSC-HVDC transmission projects, grid-connected wind power systems exhibit multi-mode oscillation characteristics that vary over time and involve interactions between multiple devices across space. These characteristics differ significantly from the oscillation mechanisms of traditional power systems and fundamentally alter the factors influencing stability.
Focusing on the mechanism analysis of these oscillation characteristics in grid-connected wind power systems, this paper investigates a VSC-HVDC connected direct-drive wind farm. First, a state-space model of the interconnected system is constructed, and the eigenvalue method is used to classify the oscillation modes and locate the key links that cause oscillation in the system. Secondly, an impedance modeling method based on transfer function is proposed, considering the influence of PLL dynamic characteristics on the impedance model of direct-drive wind farm, and further tuning the controller parameters according to the bandwidth constraint conditions, and the impedance model with bandwidth as the direct parameter is obtained. Finally, the impedance analytical expression of the system is decomposed, and the interaction process of the internal components is analyzed from a physical perspective. The influence of each control bandwidth parameter on oscillation characteristics is revealed, the underlying cause of interaction is analyzed, and the relationship between active power/main circuit parameters and internal control component interaction is systematically described. This provides a novel approach to evaluate the stability of interconnected systems based on a bandwidth model.
The main conclusions of this paper are as follows: (1) There are sub-synchronous oscillation modes and intermediate frequency oscillation modes in the system of VSC-HVDC connected direct-drive wind farm, both of which are related to D-PMSG power generation system and VSC-HVDC system. Further, a transfer function impedance model considering bandwidth constraints is proposed from the perspective of system impedance, and the Bode diagram method is used to demonstrate the interaction mechanism between the D-PMSG and VSC-HVDC control system. (2) The mathematical mechanism of the instability of grid-connected system caused by the interaction between PLL, voltage outer loop and current inner loop of VSC-HVDC system is discussed. The greater the distance between the PLL bandwidth and the VSC-HVDC inner and outer loop bandwidths, the stronger the interaction between them, increasing the tendency for oscillation amplification. (3) We reveal that the essential reason for mid-frequency band instability in the system is the interaction between the wind turbine side's current loop bandwidth and the VSC-HVDC inner and outer loop control. When the direct-drive current's inner loop bandwidth and the VSC-HVDC's inner and outer loop bandwidths increase cooperatively, the interaction intensifies, which is detrimental to the stability of the interconnected system. 4) The output active power of the D-PMSG and the VSC-HVDC filter capacitance exhibit a similar influence trend in the sub-synchronous and mid-frequency range, and the interaction between the control links is affected by changing the starting position of the low frequency band of the amplitude-frequency characteristic curve.
马燕峰, 韩珊珊, 王子建, 李然, 赵书强. 直驱风电场经柔直外送系统振荡特性及控制环节动态交互作用研究[J]. 电工技术学报, 0, (): 20250460-20250460.
Ma Yanfeng, Han Shanshan, Wang Zijian, Li Ran, Zhao Shuqiang. Study on oscillation characteristics and dynamic interaction of control link of a VSC-HVDC connected direct drive wind farm. Transactions of China Electrotechnical Society, 0, (): 20250460-20250460.
[1] Wang Luping, Xie Xiaorong, Liu Huakun, et al.Review of emerging SSR/SSO issues and their classifications[J]. The Journal of Engineering, 2017, 2017(13): 1666-1670.
[2] 吕敬, 董鹏, 施刚, 等. 大型双馈风电场经MMC-HVDC并网的次同步振荡及其抑制[J]. 中国电机工程学报, 2015, 35(19): 4852-4860.
Lü Jing, Dong Peng, Shi Gang, et al.Subsynchronous oscillation and its mitigation of MMC-based HVDC with large doubly-fed induction generator-based wind farm integration[J]. Proceedings of the CSEE, 2015, 35(19): 4852-4860.
[3] 魏伟, 许树楷, 李岩, 等. 南澳多端柔性直流输电示范工程系统调试[J]. 南方电网技术, 2015, 9(1): 73-77.
Wei Wei, Xu Shukai, Li Yan, et al.The system commissioning of Nan’ao VSC-MTDC demonstration project[J]. Southern Power System Technology, 2015, 9(1): 73-77.
[4] Song Yujiao, Breitholtz C.Nyquist stability analysis of an AC-grid connected VSC-HVDC system using a distributed parameter DC cable model[J]. IEEE Transactions on Power Delivery, 2016, 31(2): 898-907.
[5] 高本锋, 王义, 范辉, 等. 基于阻尼路径的新能源经LCC-HVDC送出系统次同步交互作用分析方法[J]. 电工技术学报, 2023, 38(20): 5572-5589.
Gao Benfeng, Wang Yi, Fan Hui, et al.A sub-synchronous interaction analysis method of renewable energy generations integrated with LCC-HVDC system based on damping path[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5572-5589.
[6] 赵书强, 沈俊铃, 邵冰冰. 直驱风电场经柔直并网系统全运行区域次同步振荡特性分析[J]. 太阳能学报, 2021, 42(12): 163-173.
Zhao Shuqiang, Shen Junling, Shao Bingbing.Subsynchronous oscillation characteristics analysis of grid-connected direct-drive wind farms via vsc-hvdc system under whole operation regions of d-pmsg[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 163-173.
[7] 邵冰冰, 赵书强, 裴继坤, 等. 直驱风电场经VSC-HVDC并网的次同步振荡特性分析[J]. 电网技术, 2019, 43(9): 3344-3355.
Shao Bingbing, Zhao Shuqiang, Pei Jikun, et al.Subsynchronous oscillation characteristic analysis of grid-connected DDWFs via VSC-HVDC system[J]. Power System Technology, 2019, 43(9): 3344-3355.
[8] 季一宁, 王海风. 包含串补的并网直驱风电场振荡稳定性及可行域分析[J]. 电工技术学报, 2024, 39(3): 686-698.
Ji Yining, Wang Haifeng.Analysis of oscillation stability and feasible region of parameters in grid-connected direct-drive wind farm with series compensation[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 686-698.
[9] 高本锋, 刘培鑫, 刘王锋, 等. 直驱风电场并网对火电机组次同步谐振影响[J]. 电工技术学报, 2024, 39(11): 3308-3322.
Gao Benfeng, Liu Peixin, Liu Wangfeng, et al.Influence of grid connected DirectDrive wind farm on subsynchronous resonance of thermal power units[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3308-3322.
[10] 罗永捷, 黄鹏, 段修超, 等. 考虑海上风电与MMC阻抗耦合的柔性直流送出系统等效阻抗建模方法[J]. 中国电机工程学报, 2024, 44(7): 2655-2670.
Luo Yongjie, Huang Peng, Duan Xiuchao, et al.Equivalent impedance modeling method for MMC-HVDC considering coupling of offshore wind power and MMC impedance[J]. Proceedings of the CSEE, 2024, 44(7): 2655-2670.
[11] 高本锋, 邓鹏程, 梁纪峰, 等. 光伏电站与弱交流电网间次同步交互作用路径及阻尼特性分析[J]. 电工技术学报, 2023, 38(24): 6679-6694.
Gao Benfeng, Deng Pengcheng, Liang Jifeng, et al.Analysis of path and damping characteristics of subsynchronous interaction between photovoltaic plant and weak AC grid[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6679-6694.
[12] 马燕峰, 程有深, 赵书强, 等. 双馈风电场并网引起火电机组多模态次同步谐振机理分析[J]. 电工技术学报, 2025, 40(5): 1395-1410.
Ma Yanfeng, Cheng Youshen, Zhao Shuqiang, et al.Mechanism analysis of multi-mode SSR of thermal power unit caused by doubly fed wind farm integration[J]. Transactions of China Electrotechnical Society, 2025, 40(5): 1395-1410.
[13] 王一珺, 杜文娟, 王海风. 基于改进复转矩系数法的多风电场接入引发多机电力系统次同步振荡机理分析[J]. 中国电机工程学报, 2021, 41(7): 2383-2395.
Wang Yijun, Du Wenjuan, Wang Haifeng.Analysis of subsynchronous oscillation in multi-machine power system caused by the integration of multiple wind farms based on improved complex torque coefficient method[J]. Proceedings of the CSEE, 2021, 41(7): 2383-2395.
[14] 陈晨, 杜文娟, 王海风. 近似强开环模式谐振条件下风电场接入引发电力系统次同步振荡分析方法[J]. 电网技术, 2018, 42(9): 2778-2788.
Chen Chen, Du Wenjuan, Wang Haifeng.An examination of SSOs induced by grid-connected wind farms in power systems under near strong open-loop modal resonance[J]. Power System Technology, 2018, 42(9): 2778-2788.
[15] 甄自竞, 杜文娟, 王海风. 近似强模式谐振下高压直流输电系统引起的次同步振荡仿真研究[J]. 中国电机工程学报, 2019, 39(7): 1976-1985.
Zhen Zijing, Du Wenjuan, Wang Haifeng.The simulation study on SSOs caused by the HVDC under the condition of near strong modal resonance[J]. Proceedings of the CSEE, 2019, 39(7): 1976-1985.
[16] Yang Ziqian, Mei Cong, Cheng Shijie, et al.Comparison of impedance model and amplitude-phase model for power- electronics-based power system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(3): 2546-2558.
[17] Shair J, Xie Xiaorong, Wang Luping, et al.Overview of emerging subsynchronous oscillations in practical wind power systems[J]. Renewable and Sustainable Energy Reviews, 2019, 99: 159-168.
[18] 李云丰, 赵文广, 孔明, 等. 直驱风电场经柔直并网的虚拟并联阻抗次同步振荡抑制策略[J]. 中国电机工程学报, 2022, 42(17): 6326-6338.
Li Yunfeng, Zhao Wenguang, Kong Ming, et al.Virtual paralleled-impedance control strategy of flexible HVDC connecting to the PMSG-based wind farm for sub-synchronous oscillation suppression[J]. Proceedings of the CSEE, 2022, 42(17): 6326-6338.
[19] Amin M, Molinas M.Understanding the origin of oscillatory phenomena observed between wind farms and HVdc systems[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 378-392.
[20] 吕敬, 蔡旭. 提高风场柔直并网系统稳定性的控制器参数优化设计[J]. 中国电机工程学报, 2018, 38(2): 431-443, 674.
Lü Jing, Cai Xu.Controller parameters optimization design for enhancing the stability of wind farm with VSC-HVDC system[J]. Proceedings of the CSEE, 2018, 38(2): 431-443, 674.
[21] 张磊, 孙媛媛, 李亚辉, 等. 基于实测数据的直驱风电机组谐波特性分析及建模方法[J]. 电力系统自动化, 2025, 49(3): 82-92.
Zhang Lei, Sun Yuanyuan, Li Yahui, et al.Measurement data based analysis and modeling method for harmonic characteristics of direct-drive wind turbine[J]. Automation of Electric Power Systems, 2025, 49(3): 82-92.
[22] 孙焜, 姚伟, 文劲宇. 双馈风电场经柔直并网系统次同步振荡机理及特性分析[J]. 中国电机工程学报, 2018, 38(22): 6520-6533.
Sun Kun, Yao Wei, Wen Jinyu.Mechanism and characteristics analysis of subsynchronous oscillation caused by DFIG-based wind farm integrated into grid through VSC-HVDC system[J]. Proceedings of the CSEE, 2018, 38(22): 6520-6533.
[23] 孙焜, 姚伟, 周毅, 等. 基于SISO序阻抗的直驱风场经柔直输电系统中频振荡机理分析及抑制[J]. 中国电机工程学报, 2023, 43(2): 442-454.
Sun Kun, Yao Wei, Zhou Yi, et al.Mechanism analysis and suppression of medium-frequency oscillation based on the SISO impedance in a PMSG-based wind farm when connected to a VSC-HVDC[J]. Proceedings of the CSEE, 2023, 43(2): 442-454.
[24] 谢小荣, 刘华坤, 贺静波, 等. 电力系统新型振荡问题浅析[J]. 中国电机工程学报, 2018, 38(10): 2821-2828, 3133.
Xie Xiaorong, Liu Huakun, He Jingbo, et al.On new oscillation issues of power systems[J]. Proceedings of the CSEE, 2018, 38(10): 2821-2828, 3133.
[25] Hatziargyriou N, Milanovic J, Rahmann C, et al.Definition and classification of power system stability-revisited & extended[J]. IEEE Transactions on Power Systems, 2021, 36(4): 3271-3281.
[26] 李景一, 毕天姝, 张鹏. 基于两输入/输出闭环传函的PMSG网侧变流器次同步频率分量响应特性分析[J]. 电网技术, 2018, 42(12): 3910-3919.
Li Jingyi, Bi Tianshu, Zhang Peng.Analysis of response characteristics of PMSG-GSC controller to subsynchronous frequency component based on TITO closed loop transfer function[J]. Power System Technology, 2018, 42(12): 3910-3919.
[27] 吴广禄, 周孝信, 王姗姗, 等. 柔性直流输电接入弱交流电网时锁相环和电流内环交互作用机理解析研究[J]. 中国电机工程学报, 2018, 38(9): 2622-2633, 2830.
Wu Guanglu, Zhou Xiaoxin, Wang Shanshan, et al.Analytical research on the mechanism of the interaction between PLL and inner current loop when VSC-HVDC connected to weak grid[J]. Proceedings of the CSEE, 2018, 38(9): 2622-2633, 2830.
[28] 陈新, 王赟程, 龚春英, 等. 采用阻抗分析方法的并网逆变器稳定性研究综述[J]. 中国电机工程学报, 2018, 38(7): 2082-2094, 2223.
Chen Xin, Wang Yuncheng, Gong Chunying, et al.Overview of stability research for grid-connected inverters based on impedance analysis method[J]. Proceedings of the CSEE, 2018, 38(7): 2082-2094, 2223.