Mechanism Analysis of the Influence of Direct Drive Wind Farm Integration on SSTI of Thermal Generator Caused by LCC-HVDC
Gao Benfeng1, Dong Hanxiao1, Lu Yajun2, Zhong Qidi2
1. Hebei Key Laboratory of Distributed Energy Storage and Micro-grid North China Electric Power University Baoding 071003 China; 2. State Grid Economic and Technological Research Institute Co. Ltd Beijing 102209 China
Abstract:The sub-synchronous interaction between the thermal generator and the LCC-HVDC (line-commutated-converter based high voltage direct current) will cause the sub-synchronous torsional interaction (SSTI) of the thermal generator shaft system, which in turn causes the fatigue accumulation of the thermal generator rotor shaft system. When the thermal generator is connected to the DDWF (direct-drive wind farm) through the LCC-HVDC sending end, or the new LCC-HVDC sending end AC bus is near the DDWF and thermal generator base at the same time, it will constitute a scene with a close electrical distance between the three. At this time, the influence of DDWF on the SSTI of thermal generator caused by LCC-HVDC can not be ignored. Firstly, based on the mathematical model of DDWF and thermal power bundled through LCC-HVDC transmission system, the small signal model of the system is established in Matlab/Simulink by block modeling method, and the correctness of the small signal model is verified by step response. Secondly, the eigenvalues of the small signal model under the two conditions of LCC-HVDC sending end access or no access to DDWF are compared and solved, and the SSTI mode of the system is separated. The influence of DDWF grid connection on SSTI damping of thermal generator is clarified, and the theoretical analysis is verified based on time domain simulation. Finally, the influence of system operation mode on SSTI damping characteristics is analyzed for wind speed, wind farm capacity, electrical distance between wind farm and LCC-HVDC rectifier station and LCC-HVDC control mode. When the DDWF is connected to the LCC-HVDC sending end, the interaction between the thermal power unit and the LCC-HVDC will cause the DDWF output power to change. When the output power deviates from the given value, the GSC controller of DDWF will respond quickly to the power deviation, adjust the active and reactive power output quickly according to the system operating conditions, and alleviate the power fluctuation caused by external disturbance. In this process, DDWF will share the power fluctuation of LCC-HVDC with thermal power units, weaken the sub-synchronous interaction between thermal power units and LCC-HVDC, and enhance the SSTI damping of thermal power units. The simulation results of typical systems show that about 27 % of the sub-synchronous current in LCC-HVDC is absorbed after DDWF is incorporated into the LCC-HVDC transmission system. The main results of this paper are as follows: (1) The PSCAD / EMTDC time domain simulation model of the system is established for the DDWF and thermal power units bundled by LCC-HVDC transmission system, and the small signal model of the system is established by block modeling method. The correctness of the small signal model is verified by comparing with the step response of the electromagnetic transient model. (2) When DDWF is not connected to the system, the sub-synchronous interaction between the thermal power unit and LCC-HVDC will aggravate the external disturbance, and the thermal power unit has SSTI risk. After DDWF is connected to the sending end of LCC-HVDC, the fast response of GSC can replace the thermal power unit to bear part of the DC power change, reduce the sub-synchronous interaction between the thermal power unit and LCC-HVDC, indirectly improve the system damping and reduce the risk of system oscillation. (3) When the capacity of DDWF increases and the wind speed increases, the damping of SSTI increases. When the electrical distance between DDWF and LCC-HVDC rectifier station increases, the system damping decreases. The SSTI damping of LCC-HVDC rectifier side constant current control is larger than that of constant power control, and the SSTI damping of inverter side constant DC voltage control is larger than that of constant turn-off angle control.
高本锋, 董涵枭, 卢亚军, 钟启迪. 直驱风电场并网对直流输电引起的火电机组轴系扭振影响机理分析[J]. 电工技术学报, 2024, 39(7): 1971-1984.
Gao Benfeng, Dong Hanxiao, Lu Yajun, Zhong Qidi. Mechanism Analysis of the Influence of Direct Drive Wind Farm Integration on SSTI of Thermal Generator Caused by LCC-HVDC. Transactions of China Electrotechnical Society, 2024, 39(7): 1971-1984.
[1] 孟沛彧, 向往, 潘尔生, 等. 分址建设直流输电系统拓扑方案与运行特性研究[J]. 电工技术学报, 2022, 37(19): 4808-4822. Meng Peiyu, Xiang Wang, Pan Ersheng, et al.Research on topology and operation characteristics of HVDC transmission system based on site-division construction[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 4808-4822. [2] 朱东海, 邹旭东, 胡家兵, 等. 双馈风电机组无撬棒故障穿越技术研究综述[J]. 电工技术学报, 2022, 37(19): 4895-4910. Zhu Donghai, Zou Xudong, Hu Jiabing, et al.Review of crowbarless fault ride through technology for doubly-fed induction generator-based wind turbines[J]. Transactions of China Electrotechnical Society, 2022, 37(19): 4895-4910. [3] 顾雪平, 白岩松, 李少岩, 等. 考虑风电不确定性的电力系统恢复全过程两阶段鲁棒优化方法[J]. 电工技术学报, 2022, 37(21): 5462-5477. Gu Xueping, Bai Yansong, Li Shaoyan, et al.Two stage robust optimization method for the whole-process power system restoration considering wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(21): 5462-5477. [4] 赵倩, 陈芳芳, 甘露. 基于改进粒子群算法优化支持向量机的风电功率预测[J]. 电气技术, 2020, 21(12): 12-16. Zhao Qian, Chen Fangfang, Gan Lu.Wind power prediction based on support vector machine trained by improved particle swarm optimization[J]. Electrical Engineering, 2020, 21(12): 12-16. [5] 董文凯, 任必兴, 王海风, 等.适用于系统次同步振荡分析的风电场等值建模方法综述[J]. 电力工程技术, 2022, 41(4): 33-43. Dong Wenkai, Ren Bixing, Wang Haifeng, et al.Small-signal equivalent modeling methods of the wind farm and its application in sub-synchronous oscillations analysis of gird-connected wind power systems[J]. Electric Power Engineering Technology, 2022, 41(4): 33-43. [6] 陶玉波, 陈昊, 秦晓辉, 等. 短期风电功率预测概念和模型与方法[J]. 电力工程技术, 2018, 37(5): 7-13. Tao Yubo, Chen Hao, Qin Xiaohui, et al.A review of the short-term wind power forecasting theory, model and approach[J]. Electric Power Engineering Technology, 2018, 37(5): 7-13. [7] 吴熙, 关雅静, 宁威, 等. 双馈风机转子侧变换器参数对次同步振荡的交互影响机理及其应用研究[J]. 电网技术, 2018, 42(8): 2536-2544. Wu Xi, Guan Yajing, Ning Wei, et al.Mechanism of interactive effect of RSC Parameters in DFIG on SSO and its application[J]. Power System Technology, 2018, 42(8): 2536-2544. [8] 国家能源局. 国家能源局2022年三季度网上新闻发布会文字实录[EB/OL].[2022-08-02]. http://www.nea.gov.cn/2022-08/02/c_1310648934.htm. National Energy Administration. Transcript of the National Energy Administration's online press conference in the third quarter of 2022[EB/OL].[2022-08-02]. http://www.nea.gov.cn/2022-08/02/c_1310648934.htm. [9] 辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9): 3117-3126. Xin Baoan, Shan Baoguo, Li Qionghui, et al.Rethinking of the “Three Elements of Energy” toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2022, 42(9): 3117-3126. [10] 王倩, 孙大卫, 盛四清, 等. 内禀自同步虚拟同步发电机对系统低频振荡特性的影响[J]. 太阳能学报, 2021, 42(12): 410-418. Wang Qian, Sun Dawei, Sheng Siqing, et al.Effect of virtual synchronous generator on low frequency oscillation characteristics of system[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 410-418. [11] 郭小江, 赵丽莉, 汤奕, 等. 风火打捆交直流外送系统功角暂态稳定研究[J]. 中国电机工程学报, 2013, 33(22): 19-25, 6. Guo Xiaojiang, Zhao Lili, Tang Yi, et al.Study on angle transient stability for wind-thermal-bundled power transmitted by AC/DC system[J]. Proceedings of the CSEE, 2013, 33(22): 19-25, 6. [12] 于洋, 徐政, 徐谦, 等. 永磁直驱式风机采用混合直流并网的控制策略[J]. 中国电机工程学报, 2016, 36(11): 2863-2870. Yu Yang, Xu Zheng, Xu Qian, et al.A control strategy for integration of permanent magnet direct-driven wind turbines through a hybrid HVDC system[J]. Proceedings of the CSEE, 2016, 36(11): 2863-2870. [13] 周佩朋, 李光范, 宋瑞华, 等. 直驱风机与静止无功发生器的次同步振荡特性及交互作用分析[J]. 中国电机工程学报, 2018, 38(15): 4369-4378, 4637. Zhou Peipeng, Li Guangfan, Song Ruihua, et al.Subsynchronous oscillation characteristics and interactions of direct drive permanent magnet synchronous generator and static var generator[J]. Proceedings of the CSEE, 2018, 38(15): 4369-4378, 4637. [14] 周长春, 徐政. 由直流输电引起的次同步振荡的阻尼特性分析[J]. 中国电机工程学报, 2003, 10(23): 6-10. Zhou Changchun, Xu Zheng.Damping analysis of subsynchronous oscillation caused by HVDC[J]. Proceedings of the CSEE, 2003, 10(23): 6-10. [15] Chao Hong, Rao Hong.The study of SSTI between Guizhou-Guangdong II ±500 kV DC transmission link and steam-turbine-generators near the rectifier terminal[C]//2006 International Conference on Power System Technology, Chongqing, China, 2006: 1-6. [16] 程时杰, 曹一家, 江全元. 电力系统次同步振荡的理论与方法[M]. 北京: 科学出版社, 2009. [17] 刘青, 徐宏璐, 朱益莹, 等. 风火联运经直流外送系统的次同步振荡抑制研究[J]. 电力电容器与无功补偿, 2020, 41(4): 200-205. Liu Qing, Xu Honglu, Zhu Yiying, et al.Study on sub-synchronous oscillation suppression of wind-thermal power bundled transmission system[J]. Power Capacitor & Reactive Power Compensation, 2020, 41(4): 200-205. [18] 杨秀, 李增尧, 胡浩然, 等. 不同输电方式下风电接入对传统火电次/超同步振荡影响研究[J/OL]. 电测与仪表, 2022, https://kns.cnki.net/kcms/detail/23.1202.TH.20220525.1206.004.html. Yang Xiu, Li Zengyao, Hu Haoran, et al. Research on wind power integration on Sub/Super-synchronous oscillation of thermal power plants under different transmission modes[J/OL]. Electrical Measurement & Instrumentation, 2022, https://kns.cnki.net/kcms/detail/23.1202.TH.20220525.1206.004.html. [19] 赵书强, 张学伟, 高本锋, 等. 风火打捆经直流送出的次同步振荡分析与抑制措施[J]. 电工电能新技术, 2017, 36(3): 41-50. Zhao Shuqiang, Zhang Xuewei, Gao Benfeng, et al.Analysis and countermeasure of sub-synchronous oscillation in wind-thermal bundling system sent out via HVDC transmission[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(3): 41-50. [20] Gao Benfeng, Hu Yunting, Song Ruihua, et al.Impact of DFIG-based wind farm integration on sub-synchronous torsional interaction between HVDC and thermal generators[J]. IET Generation, Transmission & Distribution, 2018, 12(17): 3913-3923. [21] 张学伟. 风火打捆送出系统的次同步振荡问题研究[D]. 保定: 华北电力大学, 2017. [22] 张瑞雪. 风火打捆经直流送出系统的次同步振荡研究[D]. 保定: 华北电力大学, 2019. [23] 王俊茜, 贾祺, 刘侃, 等. 基于信号注入法的风火打捆经直流外送系统次同步扭振分析[J]. 电力系统保护与控制, 2021, 49(17): 109-120. Wang Junxi, Jia Qi, Liu Kan, et al.Analysis of sub-synchronous torsional mode of wind-thermal bundled system transmitted via HVDC based on a signal injection method[J]. Power System Protection and Control, 2021, 49(17): 109-120. [24] 杨尉薇, 朱玲, 李威, 等. 风火打捆直流送出系统次同步振荡及传播特性研究[J]. 电力系统保护与控制, 2019, 47(20): 58-64. Yang Weiwei, Zhu Ling, Li Wei, et al.Study on subsynchronous oscillation and propagation character-ristics of wind-fire bundled sending system[J]. Power System Protection and Control, 2019, 47(20): 58-64. [25] Zhang Meiqing, Yuan Xiaoming, Hu Jiabing.Mechanism analysis of subsynchronous torsional interaction with PMSG-based WTs and LCC-HVDC[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9(2):1708-1724. [26] 张鹏. 交直流系统次同步振荡建模与机理分析[D]. 北京: 华北电力大学, 2014. [27] 韩俊. 基于状态空间法的多机系统次同步谐振研究[D]. 杭州: 浙江大学, 2011. [28] Kundur P.Power system stability and control[M]. New York: McGraw-Hill, 1994. [29] Wu Meng, Xie Le, Cheng Lin, et al.A study on the impact of wind farm spatial distribution on power system sub-synchronous oscillations[J]. IEEE Trans-actions on Power Systems, 2016, 31(3): 2154-2162. [30] 郭春义, 宁琳如, 王虹富, 等. 基于开关函数的LCC-HVDC换流站动态模型及小干扰稳定性[J]. 电网技术, 2017, 41(12): 3862-3870. Guo Chunyi, Ning Linru, Wang Hongfu, et al.Switching-function based dynamic model of LCC-HVDC station and small signal stability analysis[J]. Power System Technology, 2017, 41(12): 3862-3870. [31] 邵冰冰, 赵书强, 裴继坤, 等. 直驱风电场经VSC-HVDC并网的次同步振荡特性分析[J]. 电网技术, 2019, 43(9): 3344-3355. Shao Bingbing, Zhao Shuqiang, Pei Jikun, et al.Subsynchronous oscillation characteristic analysis of grid-connected DDWFs via VSC-HVDC system[J]. Power System Technology, 2019, 43(9): 3344-3355. [32] 高本锋, 崔意婵, 李蕴红, 等. D-PMSG经LCC-HVDC送出系统的次同步振荡特性分析[J]. 中国电机工程学报, 2022, 42(6): 2084-2096. Gao Benfeng, Cui Yichan, Li Yunhong, et al.Analysis of subsynchronous oscillation characteristics of D-PMSG integrated with LCC-HVDC system[J]. Proceedings of the CSEE, 2022, 42(6): 2084-2096. [33] IEEEStd 1204-1997, IEEE guide for planning DC links terminating at AC locations having low short-circuit capacities[M]. New York: IEEE PES, 1997.