Review of Research on Wideband Voltage Measurement Methods ased on Voltage Transformer
Yang Ming1, Zhu Haoshuai1, Zou Binyang2, Sima Wenxia1, Feng Yu3, Zhao Xiaolin4, Zhang Yu5
1. State Key Laboratory of Power Transmission Equipment Technology Chongqing University Chongqing 400044 China; 2. State Grid Chongqing Electric Power Research Institute Chongqing 401121 China; 3. Wuhan Branch of China Electric Power Research Institute Wuhan 430074 China; 4. China Electric Power Research Institute Beijing 100192 China; 5. State Grid Hubei Electric Power Research Institute Wuhan 430071 China
Abstract:With a high proportion of new energy and power electronic equipment access to the power grid, the ability of the power grid to regulate voltage is weakened. The wideband voltage with a wide frequency band and high amplitude has appeared in the power system, posing a serious threat to the power system. As the most widely used voltage measuring device in substations, voltage transformers have high precision when measuring power frequency voltage. However, the wideband voltage in the power system is far beyond the effective measuring range of the voltage transformer, voltage transformers have significant errors when measuring the wideband voltage, which cannot provide accurate voltage information for studying propagation, suppression, and tracing of the wideband voltage. Firstly, this paper describes the principle and process of wideband voltage sensing, including the forward voltage sensing problem (primary voltage conversion to secondary voltage) and the inverse voltage sensing problem (secondary voltage conversion to primary voltage). On this basis, the existing wideband voltage measurement methods are divided into the direct measurement methods in physical space and the indirect measurement methods in digital space. Then, after introducing the structure and measurement principle of the voltage transformer, the measurement distortion mechanism of the voltage transformer is analyzed. The distortion of the secondary voltage waveform of the voltage transformer is divided into nonlinear distortion and frequency response distortion, the former is caused by the nonlinear magnetizing characteristics of the core, and the latter is caused by the capacitor effect and eddy current effect. Secondly, according to the measurement principle, the existing wideband voltage measurement methods based on voltage transformer are divided into the structural transformation methods and the inverse compensation methods. Among them, the structural transformation methods expand the measurement frequency band of the voltage transformer by installing capacitors or current sensors, and the inverse compensation methods calculate the primary voltage from the secondary voltage of the voltage transformer by solving the inverse function of voltage transfer characteristics. Then, this paper introduces the wideband voltage measurement methods based on voltage transformer from the aspects of measurement principle, research progress, and application range. The limitations of existing wideband voltage measurement methods based on voltage transformer are analyzed in measurement performance, parameter identification, and engineering application. Finally, the advantages and disadvantages of the structural transformation methods and the inverse compensation methods are compared and summarized. Although the structural transformation methods enable the voltage transformer to have certain wideband voltage measurement capabilities, it still cannot measure some wideband voltages with frequency bands up to MHz, and the requirements for the performance of the modified components are strict, which leads to high costs. The effective frequency band of the inverse compensation methods can reach up to MHz, and there is no need to add new power primary equipment or have a structural transformation of the voltage transformer, which means low cost and easy application. However, Compared to the structural transformation methods, the measurement accuracy of the inverse compensation methods needs enhancement. The future research direction of wideband voltage measurement is prospected, such as designing a voltage transformer with a new structure and adding a temperature characterization unit to the wideband model of the voltage transformer.
杨鸣, 朱豪帅, 邹滨阳, 司马文霞, 冯宇, 赵晓林, 张宇. 基于电压互感器的宽频电压测量方法研究综述[J]. 电工技术学报, 2025, 40(7): 2247-2266.
Yang Ming, Zhu Haoshuai, Zou Binyang, Sima Wenxia, Feng Yu, Zhao Xiaolin, Zhang Yu. Review of Research on Wideband Voltage Measurement Methods ased on Voltage Transformer. Transactions of China Electrotechnical Society, 2025, 40(7): 2247-2266.
[1] 辛保安, 郭铭群, 王绍武, 等. 适应大规模新能源友好送出的直流输电技术与工程实践[J]. 电力系统自动化, 2021, 45(22): 1-8. Xin Baoan, Guo Mingqun, Wang Shaowu, et al.Friendly HVDC transmission technologies for large-scale renewable energy and their engineering practice[J]. Automation of Electric Power Systems, 2021, 45(22): 1-8. [2] 李建闽, 曹远远, 姚文轩, 等. 基于自适应移频滤波的电力系统谐波分析方法[J]. 电工技术学报, 2024, 39(13): 4015-4024. Li Jianmin, Cao Yuanyuan, Yao Wenxuan, et al.Power system harmonic analysis method based on adaptive frequency-shift filtering[J]. Transactions of China Electrotechnical Society, 2024, 39(13): 4015-4024. [3] 马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40(15): 4719-4731. Ma Ningning, Xie Xiaorong, He Jingbo, et al.Review of wide-band oscillation in renewable and power electronics highly integrated power systems[J]. Proceedings of the CSEE, 2020, 40(15): 4719-4731. [4] 孙正龙, 郝舒宇, 李明达, 等. 含构网型双馈风电的电力系统低频振荡能量结构分析方法[J]. 电工技术学报, 2025, 40(5): 1411-1426. Li Jianmin, Cao Yuanyuan, Yao Wenxuan, et al.Low frequency oscillation analysis method for gridforming doubly-fed wind power systems based on energy structures[J]. Transactions of China Electrotechnical Society, 2025, 40(5): 1411-1426. [5] 胡应宏, 李雨, 李阳, 等. 面向柔直换流站高频谐振问题的换流变压器建模与参数辨识[J]. 电工技术学报, 2024, 39(22): 7154-7166. Hu Yinghong, Li Yu, Li Yang, et al.Modeling and parameter identification of converter transformer for high-frequency resonance problem of flexible DC converter station[J]. Transactions of China Electro-technical Society, 2024, 39(22): 7154-7166. [6] 郑乐, 吴晶, 徐衍会, 等. HVDC送端系统振荡引发受端换相失败的机理分析[J]. 电工技术学报, 2024, 39(9): 2743-2754. Zheng Le, Wu Jing, Xu Yanhui, et al.Mechanism analysis of receiving end commutation failure caused by sending end oscillation in HVDC transmission system[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2743-2754. [7] 杨金洲, 李业成, 熊鸿韬, 等. 基于阻抗的新能源接入的受端电网暂态电压失稳高风险故障快速筛选方法[J]. 电工技术学报, 2024, 39(21): 6746-6758. Yang Jinzhou, Li Yecheng, Xiong Hongtao, et al.A fast screening method for the high-risk faults with transient voltage instability in receiving-end power grids interconnected with new energy based on impedance[J]. Transactions of China Electro-technical Society, 2024, 39(21): 6746-6758. [8] 徐式蕴, 王一鸣, 孙华东, 等. 国外新能源脱网事故对中国电网安全稳定运行的启示[J]. 电力系统自动化, 2024, 48(13): 1-8. Xu Shiyun, Wang Yiming, Sun Huadong, et al.Insights from renewable energy outage accidents abroad for secure and stable operation of power grids in China[J]. Automation of Electric Power Systems, 2024, 48(13): 1-8. [9] ABB Group.Instrument transformer: technical information and application guide[R]. Zurich: ABB Group, 2015. [10] Xie Shijun, Shu Ping, Ding Weidong, et al.Development of the 10 kV wideband combined resistance-capacitance voltage divider unit[C]//2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 2020: 1-4. [11] 董巍, 叶子阳, 孙泽来, 等. 阻容分压器高精度测量技术与试验[J]. 电网技术, 2022, 46(1): 328-335. Dong Wei, Ye Ziyang, Sun Zelai, et al.Measurement technology and tests for high precision RC voltage dividers[J]. Power System Technology, 2022, 46(1): 328-335. [12] 郭成, 朱明星, 段锐敏, 等. CVT谐波测量修正方法研究[J]. 电力电容器与无功补偿, 2022, 43(2): 57-63. Guo Cheng, Zhu Mingxing, Duan Ruimin, et al.Research on harmonic measurement and correction method of CVT[J]. Power Capacitor & Reactive Power Compensation, 2022, 43(2): 57-63. [13] 司马文霞, 兰海涛, 杜林, 等. 套管末屏电压传感器响应特性研究[J]. 中国电机工程学报, 2006, 26(21): 172-176. Sima Wenxia, Lan Haitao, Du Lin, et al.Study on response characteristic of voltage sensor mounted at the tap of transformer bushing[J]. Proceedings of the CSEE, 2006, 26(21): 172-176. [14] 马国明, 李成榕, 全江涛, 等. 采用套管传感器测量变压器线端快速暂态过电压的方法[J]. 中国电机工程学报, 2010, 30(33): 122-128. Ma Guoming, Li Chengrong, Quan Jiangtao, et al.Measurement of VFTO on transformer entrance with transformer bushing sensor[J]. Proceedings of the CSEE, 2010, 30(33): 122-128. [15] Ma Guoming, Li Chengrong, Quan Jiangtao, et al.Measurement of VFTO based on the transformer bushing sensor[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 684-692. [16] 胡泉伟, 黄海波, 袁鹏, 等. 基于罗氏线圈原理的500kV电网过电压监测系统的研究[J]. 高压电器, 2011, 47(5): 59-64. Hu Quanwei, Huang Haibo, Yuan Peng, et al.Overvoitage monitoring system for 500 kV power grid based on rogowski coil[J]. High Voltage Apparatus, 2011, 47(5): 59-64. [17] 郭磊, 王森, 胡攀峰, 等. 110kV及以上变电站暂态过电压在线监测方法的研究[J]. 陕西电力, 2010, 38(8): 25-29. Guo Lei, Wang Sen, Hu Panfeng, et al.Transient over-voltage online monitoring method for 110 kV and above substation[J]. Shaanxi Electric Power, 2010, 38(8): 25-29. [18] Kumada A, Hidaka K.Directly high-voltage measuring system based on pockels effect[J]. IEEE Transactions on Power Delivery, 2013, 28(3): 1306-1313. [19] 韩睿. 基于Pockels效应的无源非接触式光学过电压传感器及测量系统的研究[D]. 重庆: 重庆大学, 2017. Han Rui.Research on a battery-less and contact-less optic overvoltage sensor and measurement system based on Pockels effect[D]. Chongqing: Chongqing University, 2017. [20] Wang Dujing, Xie Nan.An optical voltage sensor based on wedge interference[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(1): 57-64. [21] 肖智宏, 于文斌, 张国庆, 等. 一种提高光学电压传感器温度稳定性的方法[J]. 电工技术学报, 2015, 30(4): 106-112. Xiao Zhihong, Yu Wenbin, Zhang Guoqing, et al.A method to improve temperature stability of optical voltage sensor[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 106-112. [22] 傅晨钊, 刘兆林, 杨凌辉, 等. 基于500 kV CVT内置低压电容C3的暂态过电压在线监测[J]. 高压电器, 2015, 51(9): 77-84, 90. Fu Chenzhao, Liu Zhaolin, Yang Linghui, et al.Transient over-voltage online monitoring technology based on 500 kV capacitive voltage transformer with interior low-voltage capacitor C3[J]. High Voltage Apparatus, 2015, 51(9): 77-84, 90. [23] Ghassemi F, Gale P, Cumming T, et al.Harmonic voltage measurements using CVTs[J]. IEEE Transac-tions on Power Delivery, 2005, 20(1): 443-449. [24] 周存和. 关于电容式电压互感器测量谐波电压的问题[J]. 电力电容器, 2006, 27(2): 43-45. Zhou Cunhe.Some problem about the harmonic voltage measurement by capacitor voltage transformer[J]. Power Capacitor & Reactive Power Compensation, 2006, 27(2): 43-45. [25] Jazebi S, de Leon F, Farazmand A, et al. Dual reversible transformer model for the calculation of low-frequency transients[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2509-2517. [26] Gustavsen B, De Silva H M J. Inclusion of rational models in an electromagnetic transients program: Y-parameters, Z-parameters, S-parameters, transfer functions[J]. IEEE Transactions on Power Delivery, 2013, 28(2): 1164-1174. [27] 杨鸣, 熊钊, 司马文霞, 等. 电磁式电压互感器“低频过电压激励-响应”逆问题求解[J]. 电工技术学报, 2021, 36(17): 3605-3613. Yang Ming, Xiong Zhao, Sima Wenxia, et al.Solution of the inverse problem of “low-frequency overvoltage excitation to response” for electromagnetic potential transformers[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3605-3613. [28] 张重远, 李文博, 陈涛. 基于TV宽频特性的过电压在线监测算法[J]. 高电压技术, 2014, 40(3): 801-807. Zhang Zhongyuan, Li Wenbo, Chen Tao.Online over-voltage monitoring algorithm based on broadband parameters of TV[J]. High Voltage Engineering, 2014, 40(3): 801-807. [29] 杨庆, 董富宁, 罗曼丹, 等. 宽频电压感知方法及其数据应用[J]. 高电压技术, 2021, 47(6): 1969-1983. Yang Qing, Dong Funing, Luo Mandan, et al.Wideband voltage sensing methods and sensing data applications[J]. High Voltage Engineering, 2021, 47(6): 1969-1983. [30] 杨庆, 孙尚鹏, 司马文霞, 等. 面向智能电网的先进电压电流传感方法研究进展[J]. 高电压技术, 2019, 45(2): 349-367. Yang Qing, Sun Shangpeng, Sima Wenxia, et al.Progress of advanced voltage/current sensing techniques for smart grid[J]. High Voltage Engineering, 2019, 45(2): 349-367. [31] 赵冬一. 变电站缓波、快速和特快速暂态过电压现场测量技术发展[J]. 电瓷避雷器, 2022(4): 106-123, 130. Zhao Dongyi.Development of on-site measurement of slow wave front, fast and ultra fast transient over-voltage in substation[J]. Insulators and Surge Arresters, 2022(4): 106-123, 130. [32] 司文荣, 傅晨钊, 赵丹丹, 等. 电网暂态过电压传感耦合技术述评[J]. 高电压技术, 2016, 42(4): 1124-1141. Si Wenrong, Fu Chenzhao, Zhao Dandan, et al.Review on sensors and measurement technologies used for transient over-voltage of power grid[J]. High Voltage Engineering, 2016, 42(4): 1124-1141. [33] 樊陈, 姚建国, 常乃超, 等. 面向电力电子化电网的宽频测量技术探讨[J]. 电力系统自动化, 2019, 43(16): 1-8, 57. Fan Chen, Yao Jianguo, Chang Naichao, et al.Discussion on wide-frequency measurement technology for power electronized power grid[J]. Automation of Electric Power Systems, 2019, 43(16): 1-8, 57. [34] 国家技术监督局. 电能质量公用电网谐波: GB/T 14549—1993[S]. 北京: 中国标准出版社, 1994. [35] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电能质量公用电网间谐波: GB/T 24337—2009[S]. 北京: 中国标准出版社, 2010. [36] Inernational Electrotechnical Commission.Electro-magnetic compatibility (EMC)-part 4-7: testing and measurement techniques-general guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto: IEC 61000-4-7[S]. Geneva: IEC, 2009. [37] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 高电压试验技术第2部分:测量系统: GB/T 16927.2—2013[S]. 北京: 中国标准出版社, 2013. [38] Inernational Electrotechnical Commission.High-voltage test techniques-part 2: measuring systems: IEC 60060-2[S]. Geneva: IEC, 2010. [39] 凌子恕. 高压互感器技术手册[M]. 北京: 中国电力出版社, 2005. [40] 刘水平. 互感器电力电容器[M]. 北京: 中国电力出版社, 2020. [41] Inernational Electrotechnical Commission.Instrument transformers-part 5: additional requirements for capacitor voltage transformers: IEC 61869-5[S]. Geneva: IEC, 2011. [42] Inernational Electrotechnical Commission.Instrument transformers-the use of instrument transformers for power quality measurement: IEC TR 61869-103[R]. Geneva: IEC, 2012. [43] Institute of Electrical and Electronics Engineers. IEEE recommended practice for monitoring electric power quality: IEEE 1159—2019[S]. New York: IEEE, 2019. [44] 孙华东, 徐式蕴, 贺静波, 等. 高比例电力电子电力系统过电压(一): 定义、分类及相关要求[J]. 中国电机工程学报, 2024, 44(1): 22-33. Sun Huadong, Xu Shiyun, He Jingbo, et al.Overvoltage of the power system integrated with high proportion of power electronics(I): definition, classification and relevant requirements[J]. Proceedings of the CSEE, 2024, 44(1): 22-33. [45] Castello P, Laurano C, Muscas C, et al.Harmonic synchrophasors measurement algorithms with embedded compensation of voltage transformer frequency response[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-10. [46] Sima Wenxia, Zou Binyang, Yang Ming, et al.Reconstructing primary voltages across inductive VTs: part I: methodology[J]. IEEE Transactions on Power Delivery, 2023, 38(2): 1353-1362. [47] 国家市场监督管理总局, 国家标准化管理委员会. 互感器第103部分:互感器在电能质量测量中的应用: GB/T 20840.103—2020[S]. 北京: 中国标准出版社, 2020. [48] 邹滨阳. 电压互感器传感逆问题与电网扰动电压波形重构研究[D]. 重庆: 重庆大学, 2023. Zou Binyang.Research on the inverse problem of voltage transformer sensing and the reconstruction of disturbance voltage waveform in power grids[D]. Chongqing: Chongqing University, 2023. [49] IEEE Working Group 15.08.09. Modeling and analysis of system transients using digital programs: PES-TR7[R]. Group 15.08.09. Modeling and analysis of system transients using digital programs: PES-TR7[R]. New York: IEEE, 1998. [50] 杨永鑫. 电容式电压互感器谐波传递特性及宽频准确测量技术研究[D]. 济南: 山东大学, 2022. Yang Yongxin.Research on harmonic transfer characteristics and wideband accurate measurement technology of capacitive voltage transformers[D]. Jinan: Shandong University, 2022. [51] 肖嵘, 赵丹丹, 张嘉旻, 等. 基于改进CVT的暂态电压扰动监测技术研究[J]. 电力电容器与无功补偿, 2023, 44(5): 58-66. Xiao Rong, Zhao Dandan, Zhang Jiamin, et al.Study on transient voltage disturbance monitoring technology based on improved CVT[J]. Power Capacitor & Reac-tive Power Compensation, 2023, 44(5): 58-66. [52] 王玲, 冯宇, 顾风彪, 等. 增设电容C3的新型CVT的误差性能优化设计[J/OL]. 高压电器, 2024: 1-9 [2024-07-09]. https://link.cnki.net/urlid/61.1127.TM.20240329.1100.002. Wang Ling, Feng Yu, Gu Fengbiao, et al. Error characteristics and application analysis of CVT with capacitor C3[J/OL]. High Voltage Apparatus, 2024: 1-9 [2024-07-09]. https://link.cnki.net/urlid/61.1127.TM.20240329.1100.002. [53] 王玲, 冯宇, 杨柳, 等. 电容式电压互感器谐波测量方法研究[J]. 电力电容器与无功补偿, 2021, 42(1): 95-100, 107. Wang Ling, Feng Yu, Yang Liu, et al.Study on harmonic measurement method of capacitor voltage transformer[J]. Power Capacitor & Reactive Power Compensation, 2021, 42(1): 95-100, 107. [54] 聂语. 基于光学混联式CVT过电压测量技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. Nie Yu.Research on overvoltage measurement tech-nology based on optical hibrid CVT[D]. Harbin: Harbin Institute of Technology, 2021. [55] 陈一悰, 刘坤雄, 冯雅琳, 等. 电容式电压互感器谐波监测技术综述[J]. 电力电容器与无功补偿, 2022, 43(5): 70-75. Chen Yicong, Liu Kunxiong, Feng Yalin, et al.Review on harmonic monitoring technology of capacitor voltage transformer[J]. Power Capacitor & Reactive Power Compensation, 2022, 43(5): 70-75. [56] Iravani M R, Wang X, Polishchuk I, et al.Digital time-domain investigation of transient behaviour of coupling capacitor voltage transformer[J]. IEEE Transactions on Power Delivery, 1998, 13(2): 622-629. [57] Moharrami S, Mokhtari H.Coupling capacitor voltage transformers as harmonics distortion monitoring devices in transmission systems[C]//2022 International Conference on Protection and Automation of Power Systems (IPAPS), Kuala Lumpur, Malaysia, 2022: 1-6. [58] 代双寅, 刘书铭, 赵麒哲, 等. 基于CVT电容电流的谐波电压测量方法[J]. 电力系统保护与控制, 2020, 48(20): 141-147. Dai Shuangyin, Liu Shuming, Zhao Qizhe, et al.A harmonic voltage measurement method based on CVT capacitor current[J]. Power System Protection and Control, 2020, 48(20): 141-147. [59] 陈一悰, 刘坤雄, 张小庆, 等. 基于电容电流的谐波电压在线监测系统研制[J]. 智慧电力, 2021, 49(6): 67-74. Chen Yicong, Liu Kunxiong, Zhang Xiaoqing, et al.Development of voltage harmonics online measurement system based on capacitor current[J]. Smart Power, 2021, 49(6): 67-74. [60] Rezaei-Zare A.Enhanced transformer model for low- and mid-frequency transients: part I: model develop-ment[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 307-315. [61] Gustavsen B.Wide band modeling of power trans-formers[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 414-422. [62] Gustavsen B.Improving the pole relocating properties of vector fitting[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1587-1592. [63] Sima Wenxia, Peng Daixiao, Yang Ming, et al.Reversible wideband hybrid model of two-winding transformer including the core nonlinearity and EMTP implementation[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3159-3169. [64] 谢施君, 雷汉坤, 王乃会, 等. 基于BP神经网络的CVT暂态电压传递特性补偿技术[J]. 高压电器, 2022, 58(2): 149-157. Xie Shijun, Lei Hankun, Wang Naihui, et al.Com-pensation technology on transient voltage transfer characteristics of CVT based on BP neural network[J]. High Voltage Apparatus, 2022, 58(2): 149-157. [65] Izykowski J, Kasztenny B, Rosolowski E, et al.Dynamic compensation of capacitive voltage trans-formers[J]. IEEE Transactions on Power Delivery, 1998, 13(1): 116-122. [66] Moutis P, Alizadeh-Mousavi O.Digital twin of distribution power transformer for real-time monitoring of medium voltage from low voltage measurements[J]. IEEE Transactions on Power Delivery, 2021, 36(4): 1952-1963. [67] Yan Lizhi, Liang Guishu, Sun Haifeng, et al.Research on the inversion calculation method of overvoltage based on the nonlinear model of potential transformer[C]//2011 7th Asia-Pacific International Conference on Lightning, Chengdu, China, 2011: 1-4. [68] Deswal D, de Leon F. Generalized circuit model for eddy current effects in multi-winding transformers[J]. IEEE Transactions on Power Delivery, 2019, 34(2): 638-650. [69] Dommel H W. Electromagnetic Transients Program. Reference Manual (EMTP Theory Book)[M]. Portland: Bonneville Power Administration, 1986. [70] 司马文霞, 胡广富, 杨鸣, 等. 融合边缘计算的互感器宽频电压测量方法[J]. 高电压技术, 2022, 48(5): 1644-1652. Sima Wenxia, Hu Guangfu, Yang Ming, et al.Wideband voltage measurement method of instrument transformer using edge computing[J]. High Voltage Engineering, 2022, 48(5): 1644-1652. [71] Ameli A, Ghafouri M, Salama M M A, et al. An auxiliary framework to mitigate measurement inaccuracies caused by capacitive voltage transformers[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11. [72] 胡广富. 基于电容式电压互感器的谐波电压测量研究[D]. 重庆: 重庆大学, 2022. Hu Guangfu.Research on harmonic voltage measurement based on capacitive voltage transformer [D]. Chongqing: Chongqing University, 2022. [73] Solomon A, Mwaniki F M, Vermeulen H J.Application of pseudo-random impulse perturbation for characterizing capacitor voltage transformer frequency responses[C]//2020 6th IEEE International Energy Conference (ENERGYCon), Gammarth, Tunis, Tunisia, 2020: 1-5. [74] 张重远, 唐帅, 梁贵书, 等. 基于电磁型电压互感器传输特性的过电压在线监测方法[J]. 中国电机工程学报, 2011, 31(22): 142-148. Zhang Zhongyuan, Tang Shuai, Liang Guishu, et al.Online over-voltage monitoring method based on transmission parameters of voltage transformer[J]. Proceedings of the CSEE, 2011, 31(22): 142-148. [75] 李文博. 基于CVT宽频线性模型的过电压在线监测方法研究[D]. 北京: 华北电力大学, 2013. Li Wenbo.Research on the online over-voltage monitoring methods based on the broadband linear model of the CVT[D]. Beijing: North China Electric Power University, 2013. [76] 陈彬, 李世松, 卢欣, 等. 表征开口式电流互感器工作原理的解析模型[J]. 电测与仪表, 2014, 51(23): 1-5. Chen Bin, Li Shisong, Lu Xin, et al.An analytical model of air-gap-core current transformer considering loading effect[J]. Electrical Measurement & Instru-mentation, 2014, 51(23): 1-5. [77] Ghassemi F, Gale P F, Clegg B, et al.Method to measure CVT transfer function[J]. IEEE Transactions on Power Delivery, 2002, 17(4): 915-920. [78] Martinez J A, Mork B A.Transformer modeling for low- and mid-frequency transients-a review[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1625-1632. [79] Zou Binyang, Sima Wenxia, Yang Ming, et al.Reconstructing primary voltage across inductive VTs: Part II: validation, application, and analysis[J]. IEEE Transactions on Power Delivery, 2023, 38(2): 1363-1374. [80] 彭代晓. 变压器铁芯动态磁滞和深度饱和表征与宽频非线性电磁暂态模型[D]. 重庆: 重庆大学, 2020. Peng Daixiao.Characterization of dynamic hysteresis and deep saturation of iron core and wideband nonlinear transient transformer model[D]. Chongqing: Chongqing University, 2020. [81] Gustavsen B.A filtering approach for merging transformer high-frequency models with 50/60-Hz low-frequency models[J]. IEEE Transactions on Power Delivery, 2015, 30(3): 1420-1428. [82] Gustavsen B.Wideband transformer modeling including core nonlinear effects[J]. IEEE Transactions on Power Delivery, 2016, 31(1): 219-227. [83] Paul D, Nakhla M S, Achar R, et al.Broadband modeling of high-frequency microwave devices[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(2): 361-373. [84] 梁贵书, 杜欣宇, 谢宇廷, 等. 电容式电压互感器的宽频无源电路模型[J]. 高电压技术, 2016, 42(1): 179-185. Liang Guishu, Du Xinyu, Xie Yuting, et al.Broadband passive circuit model of capacitor voltage transformer[J]. High Voltage Engineering, 2016, 42(1): 179-185. [85] 司马文霞, 王惠, 杨鸣, 等. 考虑中间变压器饱和特性的电容式电压互感器宽频非线性模型[J]. 中国电机工程学报, 2021, 41(14): 5034-5043. Sima Wenxia, Wang Hui, Yang Ming, et al.Wideband and nonlinear model of capacitive voltage transformer considering the saturation of intermediate transformer[J]. Proceedings of the CSEE, 2021, 41(14): 5034-5043. [86] 潘飞. 计及非线性的CVT测量系统带宽扩频研究[D]. 成都: 西南交通大学, 2022. Pan Fei.Study on expanding frequncy bandwidth of CVT measurement system considering non-linearity [D]. Chengdu: Southwest Jiaotong University, 2022. [87] Gustavsen B, Brede A P, Tande J O.Multivariate analysis of transformer resonant overvoltages in power stations[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2563-2572. [88] 潘曦宇. CVT暂态传递特性时域补偿研究[D]. 武汉: 华中科技大学, 2021. Pan Xiyu.Research on time domain compensation of CVT transient transmission characteristics[D]. Wuhan: Huazhong University of Science and Technology, 2021. [89] 许建明, 张伟, 李娜, 等. 基于BP神经网络的电容式电压互感器谐波测量误差修正方法[J]. 电气自动化, 2019, 41(6): 86-89. Xu Jianming, Zhang Wei, Li Na, et al.Method for correcting harmonic measurement errors of capacitive voltage transformers based on the BP neuraI network[J]. Electrical Automation, 2019, 41(6): 86-89. [90] Zhu Tiechao, Shao Zhenguo, Nie Yixiong.Stray capacitances calculation and harmonic measurement of capacitor voltage transformer[J]. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2022, 35(6): e3024. [91] Tong Lupeng, Liu Yi, Chen Yu, et al.A CVT based lightning impulse wave measuring method using convolutional neural network[C]//2021 IEEE 4th Inter-national Electrical and Energy Conference (CIEEC), Wuhan, China, 2021: 1-6. [92] Kasabov N, Venkov G, Minchev S.Neural systems for solving the inverse problem of recovering the primary signal waveform in potential transformers[C]// Proceedings of the International Joint Conference on Neural Networks, Portland, OR, USA, 2023: 2124-2129. [93] Machado E P, Fernandes D, Neves W L A. Tuning CCVT frequency response data for improvement of numerical distance protection[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1062-1070. [94] da Silva C A, Fernandes D, Neves W L A, et al. Coupling capacitor voltage transformer: a device to correct its secondary voltage in real time[J]. Journal of Control, Automation and Electrical Systems, 2013, 24(3): 339-348. [95] 李丰仪. 面向内部过电压测量的电容式电压互感器传变特性及其修正方法研究[D]. 西安: 西安理工大学, 2023. Li Fengyi.Research on capacitor voltage transformer transmission characteristics and correction method for internal overvoltage measurement[D]. Xi’an: Xi’an University of Technology, 2023. [96] Duan Jiandong, Guan Xiao, Li Fengyi, et al.A novel method for CVT transient transform characteristics improvement integrated with digital filter suppressing voltage oscillation[J]. IEEE Transactions on Instru-mentation and Measurement, 2024, 73: 1-12. [97] Chen Bin, Du Lin, Liu Kun, et al.Measurement error estimation for capacitive voltage transformer by insulation parameters[J]. Energies, 2017, 10(3): 357. [98] 乐健, 柳永妍, 李琼林, 等. 电容式电压互感器谐波测量误差试验技术[J]. 电力系统自动化, 2016, 40(8): 108-113. Le Jian, Liu Yongyan, Li Qionglin, et al.Harmonic measurement error test technology of capacitor voltage transformer[J]. Automation of Electric Power Systems, 2016, 40(8): 108-113.