Identification of Dielectric Response Equivalent Circuit of Transformer's Oil-paper Insulation Based on Quadratic Differential Decomposition Spectroscopy of Frequency Domain Spectroscopy
Lin Zhiyong1,3, Li Ronghua1,3, Huang Guotai2, Zhang Damin1,3, Peng Mingcheng1,3
1. School of Electrical Engineering and Automation, Xiamen University of Technology Xiamen 361024 China;
2. Fujian Electric Power supplies Limited Fuzhou 350003 China;
3. Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control Xiamen 361024 China
This paper presents a novel approach in addressing the challenges where the number of polarization branches in equivalent circuits is often assumed, and parameter identification requires complex iterative optimization algorithms. By analyzing the relationship between the extended Debye model equivalent circuit and frequency domain spectroscopy characteristics, this paper researches the real part of the polarized complex capacitance. This study transforms and reconstructs it to create the quadratic differential spectral lines of the real part of the polarized complex capacitance. The characteristics of these sub-spectral lines are analyzed as follows: (1)Each sub-spectral line exhibits a unique peak point, gradually decaying to zero on both sides of the peak. The sub-spectral lines shift to the right as the time constant decreases. (2)The spectral line comprises several sub-spectral lines with different time constants. The number of peak points corresponds to the number of polarization branches in the extended Debye equivalent model. (3)Sub-Spectral Lines: The previous sub-spectral line significantly influences the subsequent one, while the latter has minimal impact on the peak of the former. (4)By performing spectral decomposition starting from the first peak point, the characteristics of each sub-spectral line can be obtained.
Based on the characteristics of these sub-spectral lines, this paper proposes a method to determine the number of polarization branches of the equivalent circuit by using the number of peak points of the quadratic differential spectral line of the real part of the polarization complex capacitance, and a method of using the coordinates of the peak points of the sub-spectral lines to determine the equivalent circuit parameters. Due to the significance and uniqueness of each peak point, this method can avoid the problems of presetting the number of polarization branches and the non-uniqueness of the identification results in the existing parameter identification methods, thus improving the accuracy of parameter identification. this paper proposes the parameter identification steps based on the frequency domain dielectric spectrum quadratic differential decomposition spectroscopy method. To verify the reliability of the proposed method, the real part of the polarized complex capacitance of a transformer is first identified by the proposed method for the quadratic differential decomposition spectroscopy and equivalent circuit parameters. Then, to verify the applicability of this method to transformers with different aging states, the polarization complex capacitance real part method is studied for multiple transformers with varying states of aging. To evaluate the effectiveness of this method for transformers in various aging states, the quadratic differential decomposition spectroscopy technique was applied to multiple transformers with differing conditions. The findings are as follows: This method achieves an impeccable 100% accuracy in identifying the number of polarization branches within the equivalent circuit. The technique surpasses 98% accuracy in identifying equivalent circuit parameters. The correlation between the spectrum obtained through spectral decomposition and the actual measured values exceeds 97%, the quadratic differential spectral line of the real part of the polarized complex capacitance can accurately and uniquely identify the equivalent circuit parameters. This approach effectively enhances the reliability and efficiency of identifying these parameters by utilizing the characteristics of the frequency domain spectroscopy. Additionally, it offers a novel method for accurately diagnosing the aging state of transformer oil-paper insulation.
林智勇, 李荣华, 黄国泰, 张达敏, 彭铭珵. 基于频域介电谱二次微分解谱法的变压器油纸绝缘介电响应等效电路参数辨识[J]. 电工技术学报, 0, (): 1347-.
Lin Zhiyong, Li Ronghua, Huang Guotai, Zhang Damin, Peng Mingcheng. Identification of Dielectric Response Equivalent Circuit of Transformer's Oil-paper Insulation Based on Quadratic Differential Decomposition Spectroscopy of Frequency Domain Spectroscopy. Transactions of China Electrotechnical Society, 0, (): 1347-.
[1] 赵洪山, 常杰英, 曲岳晗, 等. 基于二元非线性Wiener随机过程的变压器油纸绝缘剩余寿命预测方法[J]. 电工技术学报, 2023, 38(15): 4040-4049.
Zhao Hongshan, Chang Jieying, Qu Yuehan, et al. Residual life prediction method of transformer oil-paper insulation based on binary nonlinear Wiener random process[J]. Transactions of China Electrotechnical Society, 2023, 38(15): 4040-4049.
[2] 郑玉平, 郝治国, 薛众鑫, 等. 大型电力变压器安全运行与主动保护技术探索[J]. 电力系统自动化, 2023, 47(20): 1-12. Zheng Yuping, Hao Zhiguo, Xue Zhongxin, et al. Exploration of safe operation and active protection technology for large-capacity power transformers[J]. Automation of Electric Power Systems, 2023, 47(20): 1-12.
[3] 刘刚, 高成龙, 胡万君, 等. 基于改进的连续局部枚举采样和径向基函数响应面法的变压器静电环结构优化设计[J]. 电工技术学报, 2023, 38(23): 6266-6278. Liu Gang, Gao Chenglong, Hu Wanjun, et al. Optimized design of transformer electrostatic ring based on radial basis function response surface method with enhanced successful local enumeration sampling[J]. Transactions of China Electrotechnical Society, 2023, 38(23): 6266-6278.
[4] 李唐兵, 童军心, 童涛, 等. 老化对特高压变压器油纸绝缘介电特性及特征量的影响[J]. 变压器, 2021, 58(7): 19-24. Li Tangbing, Tong Junxin, Tong Tao, et al. Effect of aging on dielectric characteristic and characteristic parameter of oil-paper insulation in UHV transformer[J]. Transformer, 2021, 58(7): 19-24.
[5] 张明泽, 孟繁昊, 刘骥, 等. 变压器油纸绝缘频域介电响应非线性特性研究[J]. 中国电机工程学报, 2023, 43(2): 831-843. Zhang Mingze, Meng Fanhao, Liu Ji, et al. Research on nonlinear characteristics for frequency domain dielectric response of transformer oil-paper insulation[J]. Proceedings of the CSEE, 2023, 43(2): 831-843.
[6] 梁一霖, 张明泽, 刘骥, 等. 复杂运行条件下非均匀老化油纸绝缘典型电场变化特性[J]. 高电压技术, 2024, 50(4): 1731-1741. Liang Yilin, Zhang Mingze, Liu Ji, et al. Variation characteristics of typical electric field of non-uniform aging oil-paper insulation under complex operating conditions[J]. High Voltage Engineering, 2024, 50(4): 1731-1741.
[7]Münster T, Werle P, Hämel K, et al. Thermally accelerated aging of insulation paper for transformers with different insulating liquids[J]. Energies, 2021, 14(11): 3036.
[8]Wei Yanhui, Han Wang, Li Guochang, et al. Aging characteristics of transformer oil-impregnated insulation paper based on trap parameters[J]. Polymers, 2021, 13(9): 1364.
[9] 孔灿, 张大宁, 田杰, 等. 110 kV变压器油纸绝缘套管不均匀绝缘受潮劣化分析[J]. 智慧电力, 2020, 48(4): 119-124. Kong Can, Zhang Daning, Tian Jie, et al. Non-uniform moisture degradation analysis of 110 kV transformer oil-paper insulation bushing[J]. Smart Power, 2020, 48(4): 119-124.
[10] 张寒, 万保权, 胡伟, 等. 热效应对胶浸纸套管绝缘性能的影响及温度反演方法[J]. 高电压技术, 2022, 48(10): 4124-4132. Zhang Han, Wan Baoquan, Hu Wei, et al. Influence of thermal effect on insulation performance of resin impregnated paper bushing and temperature inversion method[J]. High Voltage Engineering, 2022, 48(10): 4124-4132.
[11] 史加奇, 赵春明, 许文燮, 等. 基于WOA-LM算法的变压器油纸绝缘等效模型参数辨识[J]. 水电能源科学, 2021, 39(8): 190-193. Shi Jiaqi, Zhao Chunming, Xu Wenxie, et al. Parameter identification of transformer oil-paper insulation equivalent model based on WOA-LM algorithm[J]. Water Resources and Power, 2021, 39(8): 190-193.
[12] 刘雅琴, 张涛. 基于Debye模型分析变压器油纸绝缘频域介电谱特性研究[J]. 电工电气, 2017(1): 18-21. Liu Yaqin, Zhang Tao. Analysis of frequency domain dielectric spectrum properties of transformer oil paper insulation based on Debye model[J]. Electrotechnics Electric, 2017(1): 18-21.
[13] 杜林, 杨峰, 蔚超, 等. 基于频域介电谱的油纸绝缘宽频等效模型参数辨识研究[J]. 电工技术学报, 2018, 33(5): 1158-1166. Du Lin, Yang Feng, Wei Chao, et al. Parameter identification of the wide-band model of oil-impregnated paper insulation using frequency domain spectroscopy[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1158-1166.
[14] 蔡金锭, 刘永清, 蔡嘉. 油纸绝缘变压器极化等效电路分析及其老化评估[J]. 电工技术学报, 2016, 31(15): 204-212. Cai Jinding, Liu Yongqing, Cai Jia. Analysis of equivalent circuit of oil-paper insulation transformer relaxation response and aging evaluation[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 204-212.
[15]Olmi R, Bittelli M. Dielectric data analysis: recovering hidden relaxations by fourth-order derivative spectroscopy[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6): 3334-3340.
[16] 蔡金锭, 曾静岚. 基于二次时域微分解析法的油纸绝缘介质响应参数辨识[J]. 高电压技术, 2017, 43(6): 1937-1942. Cai Jinding, Zeng Jinglan. Parameter identification for dielectric response of oil-paper insulation based on second time-differential analysis[J]. High Voltage Engineering, 2017, 43(6): 1937-1942.
[17] 邹阳, 林锦煌, 何津, 等. 基于频谱解构法的油纸绝缘扩展德拜模型参数辨识[J]. 电工技术学报, 2023, 38(3): 622-632. Zou Yang, Lin Jinhuang, He Jin, et al. Parameter identification of oil paper insulation extended Debye model based on spectrum deconstruction method[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 622-632.
[18] 曲德宇, 丛培杰, 吴杰, 等. 基于分步拟合法的变压器油纸绝缘等效参数辨识研究[J]. 自动化与仪表, 2020, 35(11): 6-9, 14. Qu Deyu, Cong Peijie, Wu Jie, et al. Research on equivalent parameter identification of oil paper insulation of transformer based on step fitting method[J]. Automation & Instrumentation, 2020, 35(11): 6-9, 14.
[19]Varakantham S R, Kliem H. Dielectric relaxational phenomena in interacting composite structures[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(3): 845-852.
[20] 黄猛, 李怡然, 吴延宇, 等. 计及界面电荷和极性效应的油纸复合绝缘非线性电路等效模型[J]. 电工技术学报, 2024, 39(11): 3422-3432. Huang Meng, Li Yiran, Wu Yanyu, et al. Equivalent nonlinear circuit model with interface charge and polarity effect for oil-paper composite insulation[J]. Transactions of China Electrotechnical Society, 2024, 39(11): 3422-3432.
[21] 马御棠, 束洪春, 钱国超, 等. 基于频域介电谱曲线分解的氧化锌避雷器老化状态评估[J]. 电工技术学报, 2024, 39(3): 901-913. Ma Yutang, Shu Hongchun, Qian Guochao, et al. Method for evaluating the aging state of ZnO arrester based on curve decomposition of frequency domain dielectric spectrum[J]. Transactions of China Electrotechnical Society, 2024, 39(3): 901-913.
[22] 廖浩泉, 吴智影, 饶红疆, 等. 非线性误差电流抑制算法的电力变压器绝缘电阻测量方案[J]. 高压电器, 2020, 56(7): 189-192. Liao Haoquan, Wu Zhiying, Rao Hongjiang, et al. Measurement scheme of insulation resistance of power transformer based on nonlinear error current suppression algorithm[J]. High Voltage Apparatus, 2020, 56(7): 189-192.
[23] 徐晴川, 王圣康, 林福昌, 等. 基于时频域介电响应的绝缘油弛豫过程分析[J]. 电工技术学报, 2022, 37(9): 2355-2365. Xu Qingchuan, Wang Shengkang, Lin Fuchang, et al. Analysis of relaxation process of insulating oil based on dielectric response in time and frequency domain[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2355-2365.
[24] 杨峰, 唐超, 周渠, 等. 基于等效电路的油纸绝缘系统受潮状态分析[J]. 电工技术学报, 2020, 35(21): 4586-4596. Yang Feng, Tang Chao, Zhou Qu, et al. Analyzing the moisture state of oil-paper insulation system using an equivalent circuital model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4586-4596.
[25] 潘志城, 楚金伟, 张晋寅, 等. 提高试验电压对抑制高压交流油纸绝缘套管频域介电谱测试电磁干扰影响的研究[J]. 电瓷避雷器, 2021(2): 66-71. Pan Zhicheng, Chu Jinwei, Zhang Jinyin, et al. Improving test voltage to suppress influence of electromagnetic interference in frequency domain dielectric spectrum test of high voltage AC oil-paper insulated bushing[J]. Insulators and Surge Arresters, 2021(2): 66-71.