Voltage Compensation-Based Power Decoupling Strategy for Droop Control Converters
Wang Pengcheng1,2, Chen Min1,2,3, Zhu Guannan1,2, Wang Jiahui1,2, Jiang Feng1,2
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. ZJU-Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou 311200 China; 3. Research Institute of Zhejiang University-Taizhou Zhejiang University Taizhou 318000 China
Abstract:Grid-forming technologies such as droop control are the key to improving the stability of the modern power system. However, for independent control of active and reactive power, the equivalent impedance of transmission lines must be purely inductive, and the power angle should be small. In low/medium-voltage grids with distributed renewable energy integration, the line resistance cannot be ignored, and the power angle may vary over a more extensive range, leading to significant power coupling issues. Power coupling will increase steady-state reactive power deviation, reduce system stability margin, and even trigger oscillatory instability. A small-signal model of the grid-connected system with power coupling is first established. Root locus analysis indicates that power coupling reduces the system stability margin, and the larger the R/X ratio, the lower the system stability margin. Further amplitude-phase analysis shows that the negative damping in the active power loop due to power coupling is the primary cause of the reduced system stability margin. The steady-state power coupling coefficient reveals that power coupling increases the steady-state reactive power deviation, and the larger the R/X ratio, the greater the steady-state reactive power deviation. To address these issues, a power decoupling strategy based on voltage compensation principles is proposed: (1) An angular frequency deviation compensation term is introduced into the voltage loop to reduce the negative damping effect of power coupling and improve the system stability margin. (2) The ideal decoupled voltage when the steady-state reactive power deviation is zero is calculated, and the difference between the actual output voltage and the ideal decoupled voltage is used for active power feedforward compensation, thereby reducing the steady-state reactive power deviation. Experiments are carried out in a three-phase droop control converter grid-connected system. Under the conditions of R/X = 0.32 and 0.53, the proposed decoupling method reduces the minimum reactive power during the dynamic process from -0.46(pu) and -0.59(pu) to 0.001(pu) and 0.008(pu), respectively. The steady-state reactive power deviation also decreases from -0.231(pu) and -0.342(pu) to -0.003(pu) and -0.007(pu), respectively. Furthermore, under the R/X = 0.32 condition, the power response time using the proposed decoupling method is 120 ms, which is essentially the same as without the decoupling method. In contrast, with the virtualinductor (VI) decoupling method, the power response time increases to 360 ms, and the steady-state reactive power deviation is -0.131(pu).Therefore, the VI decoupling method not only slows down the response speed but also fails to eliminate steady-state power coupling. Experimental results show that: (1) The proposed decoupling method can suppress power oscillations during the dynamic process under various R/X conditions and improve the system stability margin. (2) The proposed decoupling method reduces steady-state reactive power deviation, and changes in the reactive power setpoint do not affect active power control accuracy. (3) Compared to the VI decoupling method, the proposed decoupling method does not slow down the converter’s response speed and demonstrates better steady-state decoupling capability, helping to improve the dynamic and steady-state performance of droop-controlled converters in distributed renewable energy generation systems.
王鹏程, 陈敏, 朱冠南, 王嘉辉, 江峰. 基于电压补偿的下垂控制变换器功率解耦策略[J]. 电工技术学报, 2026, 41(3): 821-833.
Wang Pengcheng, Chen Min, Zhu Guannan, Wang Jiahui, Jiang Feng. Voltage Compensation-Based Power Decoupling Strategy for Droop Control Converters. Transactions of China Electrotechnical Society, 2026, 41(3): 821-833.
[1] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61-69. Shu Yinbiao, Chen Guoping, He Jingbo, et al.Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61-69. [2] 黄萌, 舒思睿, 李锡林, 等. 面向同步稳定性的电力电子并网变流器分析与控制研究综述[J]. 电工技术学报, 2024, 39(19): 5978-5994. Huang Meng, Shu Sirui, Li Xilin, et al.A review of synchronization-stability-oriented analysis and control of power electronic grid-connected converters[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 5978-5994. [3] 胡光, 庄可好, 高晖胜, 等. 低惯量交流系统并网变流器次/超同步振荡分析[J]. 电工技术学报, 2024, 39(8): 2250-2264. Hu Guang, Zhuang Kehao, Gao Huisheng, et al.Sub/super synchronous oscillation analysis of grid-connected converter in low inertia AC system[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2250-2264. [4] 梁军杨, 李红, 宋国杰, 等. 多时间尺度控制下跟网型变换器的同步稳定性分析与改进控制[J]. 电工技术学报, 2024, 39(22): 7182-7196. Liang Junyang, Li Hong, Song Guojie, et al.Synchro-nization stability analysis and enhanced control of grid-following converters under multi-timescale control[J]. Transactions of China Electrotechnical Society, 2024, 39(22): 7182-7196. [5] 孙鹏飞, 田震, 查晓明, 等. 功率同步型构网变流器并网系统暂态同步稳定性研究综述[J]. 电力系统自动化, 2025, 49(02): 1-19. Sun Pengfei, Tian Zhen, Zha Xiaoming, et al.Review on research of transient synchronization stability for grid-connected system based on power-synchronization grid-forming converter[J]. Automation of Electric Power Systems, 2025, 49(2): 1-19. [6] Gao Mingzhi, Chen Min, Zhao Bin, et al.Design of control system for smooth mode-transfer of grid-tied mode and islanding mode in microgrid[J]. IEEE Trans-actions on Power Electronics, 2020, 35(6): 6419-6435. [7] Gao Mingzhi, Chen Min, Wang Chenxi, et al.An accurate power-sharing control method based on circulating-current power phasor model in voltage-source inverter parallel-operation system[J]. IEEE Trans-actions on Power Electronics, 2018, 33(5): 4458-4476. [8] Yao Wei, Chen Min, Matas J, et al.Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing[J]. IEEE Transactions on Industrial Electronics, 2011, 58(2): 576-588. [9] Meng Xin, Liu Jinjun, Liu Zeng.A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control[J]. IEEE Transactions on Power Electronics, 2019, 34(6): 5416-5438. [10] 李亚楼, 赵飞, 樊雪君. 构网型储能及其应用综述[J]. 发电技术, 2025, 46(2): 386-398. Li Yalou, Zhao Fei, Fan Xuejun.Review of grid-forming energy storage and its applications[J]. Power Generation Technology, 2025, 46(2): 386-398. [11] 金楠, 肖晗, 谢欢, 等. NPC三电平虚拟同步机桥臂故障容错模型预测控制[J]. 电源学报, 2024, 22(2): 147-157. Jin Nan, Xiao Han, Xie Huan, et al.Fault-tolerant model predictive control for bridge arm of NPC three-level virtual synchronous generator[J]. Journal of Power Supply, 2024, 22(2): 147-157. [12] Zhang Lidong, Harnefors L, Nee H P.Power-synchronization control of grid-connected voltage-source converters[J]. IEEE Transactions on Power Systems, 2010, 25(2): 809-820. [13] 伍文华, 周乐明, 陈燕东, 等. 序阻抗视角下虚拟同步发电机与传统并网逆变器的稳定性对比分析[J]. 中国电机工程学报, 2019, 39(5): 1411-1421. Wu Wenhua, Zhou Leming, Chen Yandong, et al.Stability comparison and analysis between the virtual synchronous generator and the traditional grid-connected inverter in the view of sequence impedance[J]. Proceedings of the CSEE, 2019, 39(5): 1411-1421. [14] 杜步阳, 邵德军, 朱建行, 等. 电压源型变器并网系统多时间尺度间相互作用[J]. 电工技术学报, 2023, 38(20): 5547-5559. Du Buyang, Shao Dejun, Zhu Jianhang, et al.The interaction between multiple timescales of the grid-tied voltage source converter[J]. Transactions of China Electrotechnical Society, 2023, 38(20): 5547-5559. [15] Li Chang, Yang Yaqian, Mijatovic N, et al.Frequency stability assessment of grid-forming VSG in framework of MPME with feedforward decoupling control strategy[J]. IEEE Transactions on Industrial Electronics, 2022, 69(7): 6903-6913. [16] Zhao Fangzhou, Zhu Tianhua, Li Zejie, et al.Low-frequency resonances in grid-forming converters: causes and damping control[J]. IEEE Transactions on Power Electronics, 2024, 39(11): 14430-14447. [17] 于彦雪, 关万琳, 陈晓光, 等. 基于序阻抗的虚拟同步机同步频率谐振现象[J]. 电工技术学报, 2022, 37(10): 2584-2595. Yu Yanxue, Guan Wanlin, Chen Xiaoguang, et al.Synchronous frequency resonance in virtual synch-ronous generator based on sequence-impedance[J]. Transactions of China Electrotechnical Society, 2022, 37(10): 2584-2595. [18] 熊小玲, 李昕悦, 周琰, 等. 基于陷波器的构网型换流器同步频率谐振抑制策略[J]. 电工技术学报, 2024, 39(12): 3827-3839. Xiong Xiaoling, Li Xinyue, Zhou Yan, et al.Synch-ronous frequency resonance suppression of grid-forming converter based on Notch filter[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3827-3839. [19] Li Mingxuan, Wang Yue, Hu Weihao, et al.Unified modeling and analysis of dynamic power coupling for grid-forming converters[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2321-2337. [20] 杜建鹏, 赵晋斌, 曾志伟, 等. 基于虚拟功角功率控制的VSG增强功率解耦策略[J]. 中国电机工程学报, 2024, 44(22): 8808-8819. Du Jianpeng, Zhao Jinbin, Zeng Zhiwei, et al.Enhanced power decoupling strategy for VSG with power control based on virtual power angle[J]. Proceedings of the CSEE, 2024, 44(22): 8808-8819. [21] Yang Yaqian, Xu Jiazhu, Li Chang, et al.A new virtual inductance control method for frequency stabilization of grid-forming virtual synchronous generators[J]. IEEE Transactions on Industrial Electro-nics, 2023, 70(1): 441-451. [22] 李明烜, 王跃, 徐宁一, 等. 松弛小功角约束条件的虚拟同步发电机功率解耦策略[J]. 电力系统自动化, 2018, 42(9): 59-68. Li Mingxuan, Wang Yue, Xu Ningyi, et al.Power decoupling strategy for virtual synchronous generator relaxing condition of small power angle[J]. Automa-tion of Electric Power Systems, 2018, 42(9): 59-68. [23] Dong Ningbo, Li Mengfei, Chang Xiaofei, et al.Robust power decoupling based on feedforward decoupling and extended state observers for virtual synchronous generator in weak grid[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11(1): 576-587. [24] Li Yun wei, Kao C N. An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid[J]. IEEE Transactions on Power Electronics, 2009, 24(12): 2977-2988. [25] Wen Tiliang, Zhu Donghai, Zou Xudong, et al.Power coupling mechanism analysis and improved decoup-ling control for virtual synchronous generator[J]. IEEE Transactions on Power Electronics, 2021, 36(3): 3028-3041. [26] Long Bo, Zhu Shihan, Rodriguez J, et al.Enhance-ment of power decoupling for virtual synchronous generator: a virtual inductor and virtual capacitor approach[J]. IEEE Transactions on Industrial Electro-nics, 2023, 70(7): 6830-6843. [27] 张林, 张海波, 蒋维勇, 等. 基于自适应动态虚拟同步阻抗的虚拟同步机功率解耦策略[J]. 中国电机工程学报, 2024, 44(15): 6010-6023. Zhang Lin, Zhang Haibo, Jiang Weiyong, et al.Power decoupling strategy for virtual synchronous generator based on adaptive dynamic virtual synchronous impedance[J]. Proceedings of the CSEE, 2024, 44(15): 6010-6023. [28] 李武华, 王金华, 杨贺雅, 等. 虚拟同步发电机的功率动态耦合机理及同步频率谐振抑制策略[J]. 中国电机工程学报, 2017, 37(2): 381-391. Li Wuhua, Wang Jinhua, Yang Heya, et al.Power dynamic coupling mechanism and resonance suppres-sion of synchronous frequency for virtual synchronous generators[J]. Proceedings of the CSEE, 2017, 37(2): 381-391. [29] Li Yitong, Gu Yunjie, Zhu Yue, et al.Impedance circuit model of grid-forming inverter: visualizing control algorithms as circuit elements[J]. IEEE Trans-actions on Power Electronics, 2021, 36(3): 3377-3395.