The Swelling and Oxidation Synergistic Pretreatment Mechanism to Accelerate the Biodegradation of Epoxy Resin
Yang Shifang1, Guo Yiliang1, Liu Yunpeng1, Wang Zhong2, Tong Mengyang1, Chu Zian1, Mi Jizhe3
1. Department of Electrical Engineering North China Electric Power University Baoding 071000 China; 2. College of Electrical Engineering Sichuan University Chengdu 610000 China; 3. State Grid Baoding Electric Power Supply Company Baoding 071051 China
Abstract:Epoxy resin, which has been widely and extensively applied in the field of electrical insulation because of its outstanding structural stability, encounters significant hurdles in the recycling process. This is primarily attributed to its highly cross-linked network structure. Traditional physical and chemical pretreatment methods often involve harsh conditions, high costs, or environmental risks. In order to accelerate the degradation, this paper proposes a synergistic pretreatment strategy. It makes use of Dipropyleneglycol dimethyl ether(DMM), a green solvent, and low-concentration KMnO4 to disrupt the structural integrity of the epoxy resin under relatively mild operating conditions. A total of 45 experimental groups were meticulously and systematically designed to assess the impacts of various parameters. The experimental parameters were set as follows: reaction temperature 85~99℃, duration 30~90 min; KMnO4 solutions at 0.1 and 0.5 mol/L; and treatment modes—DMM and KMnO4 were applied either individually or in combination. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM) were utilized to evaluate thermal stability, cross-linking density, mechanical properties, and morphological changes. Meanwhile, this paper explores the action mechanisms of different treatment methods. According to the experimental results, this pretreatment method significantly reduces the physical stability and chemical cross-linking degree of the epoxy resin. At the same time this paper proposes that the mechanism of action of DMM is to penetrate into the structure of the epoxy resin through swelling, making the original system loose. At the same time, it forms a new system with the epoxy resin through hydrogen bonding, thereby reducing its physical stability. Potassium permanganate will form different oxidation products under different reaction conditions, and specific reaction pathways are proposed in this paper. When applied to Aspergillus niger mediated biodegradation, pretreated samples exhibited accelerated degradation. After 30 days, the Tg of combined-pretreated samples decreased to 40~45℃, compared to 90~95℃ for untreated controls. Pretreatment makes the surface of the sample rough and rich in hydroxyl groups, which enhances the attachment and reproduction of Aspergillus niger.
杨世芳, 郭奕良, 刘云鹏, 王仲, 佟孟洋, 储子安, 秘吉喆. 加速环氧树脂生物降解的溶胀氧化协同预处理机理[J]. 电工技术学报, 2026, 41(3): 794-806.
Yang Shifang, Guo Yiliang, Liu Yunpeng, Wang Zhong, Tong Mengyang, Chu Zian, Mi Jizhe. The Swelling and Oxidation Synergistic Pretreatment Mechanism to Accelerate the Biodegradation of Epoxy Resin. Transactions of China Electrotechnical Society, 2026, 41(3): 794-806.
[1] 张葳蕤, 崔晓凤, 黄明, 等. 110 kV复合绝缘子硅橡胶伞裙失效机理分析[J]. 电气技术, 2025, 26(8): 23-30, 36. Zhang Weirui, Cui Xiaofeng, Huang Ming, et al.Analysis on the failure mechanism of silicone rubber sheds for 110 kV composite insulators[J]. Electrical Engineering, 2025, 26(8): 23-30, 36. [2] 胡琴, 陈旭烨, 闻君, 等. 强暴雨天气下复合悬式绝缘子交流闪络特性[J]. 电工技术学报, 2025, 40(9): 2970-2981. Hu Qin, Chen Xuye, Wen Jun, et al.AC flashover characteristics of composite suspension insulators under heavy rainstorm[J]. Transactions of China Electrotechnical Society, 2025, 40(9): 2970-2981. [3] 刘贺晨, 魏利伟, 孙章林, 等. 催化剂对基于动态酯交换Vitrimers材料性能的影响[J]. 电工技术学报, 2024, 39(16): 5134-5148. Liu Hechen, Wei Liwei, Sun Zhanglin, et al.Effect of catalysts on the performance of Vitrimers based on dynamic ester exchange[J]. Transactions of China Electrotechnical Society, 2024, 39(16): 5134-5148. [4] 刘贺晨, 胡如法, 刘云鹏, 等. 220 kV退役复合绝缘子芯棒整体回收再利用可行性研究[J]. 电工技术学报, 2024, 39(11): 3433-3443. Liu Hechen, Hu Rufa, Liu Yunpeng, et al.Feasibility of the overall recycling of 220 kV retired composite insulator core rods[J]. Transactions of China Electro-technical Society, 2024, 39(11): 3433-3443. [5] Zhu P, Yang Y Z, Chen Y, et al.Influence factors of determining optimal organic solvents for swelling cured brominated epoxy resins to delaminate waste printed circuit boards[J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 245-253. [6] Yang Shifang, Jia Zhidong, Ouyang Xiaogang, et al.Inhibition of algae growth on HVDC polymeric insulators using antibiotic-loaded silica aerogel nano-composites[J]. Polymer Degradation and Stability, 2018, 155: 262-270. [7] Huang Haihong, Yin Yanzhen, Cheng Huanbo, et al.Degradation mechanism of CF/EP composites in supercritical n-butanol with alkali additives[J]. Journal of Polymers and the Environment, 2017, 25(2): 115-125. [8] 周松松, 杜怡君, 王晰, 等. 我国户外复合绝缘子用环氧树脂基复合材料的应用现状及问题讨论[J]. 中国标准化, 2021(增刊1): 222-228. Zhou Songsong, Du Yijun, Wang Xi, et al.Application status and problems of epoxy resin matrix composites for outdoor composite insulators in China[J]. China Standardization, 2021(S1): 222-228. [9] 杨世芳. 藻类与输变电设备外绝缘[M]. 长沙: 湖南科学技术出版社, 2024. [10] Yang Shifang, Jia Zhidong, Ouyang Xiaogang.Effects of algae contamination on the hydrophobicity of high-voltage composite insulators[J]. High Voltage, 2019, 4(3): 234-240. [11] Yang Peng, Zhou Qian, Yuan Xiaoxue, et al.Highly efficient solvolysis of epoxy resin using poly(ethylene glycol)/NaOH systems[J]. Polymer Degradation and Stability, 2012, 97(7): 1101-1106. [12] Yan Hua, Lu Chunxiang, Jing Deqi, et al.Chemical degradation of amine-cured DGEBA epoxy resin in supercritical 1-propanol for recycling carbon fiber from composites[J]. Chinese Journal of Polymer Science, 2014, 32(11): 1550-1563. [13] Xing Mingfei, Zhang Fushen.Degradation of brominated epoxy resin and metal recovery from waste printed circuit boards through batch sub/supercritical water treatments[J]. Chemical Engineering Journal, 2013, 219: 131-136. [14] Cheng Huanbo, Huang Haihong, Liu Zhifeng, et al.Reaction kinetics of CFRP degradation in supercri-tical fluids[J]. Journal of Polymers and the Environ-ment, 2018, 26(5): 2153-2165. [15] Hooper R, Potter A K N, Singh M M. Diversion from landfill: mechanical recycling of plastics from materials recovery facilities and from shredder residue[J]. Green Chemistry, 2001, 3(2): 57-60. [16] Tittarelli F.Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: part 2[J]. Construction and Building Materials, 2013, 47: 1539-1543. [17] García D, Vegas I, Cacho I.Mechanical recycling of GFRP waste as short-fiber reinforcements in micro-concrete[J]. Construction and Building Materials, 2014, 64: 293-300. [18] Luna-Galiano Y, Leiva C, Villegas R, et al.Carbon fiber waste incorporation in blast furnace slag geopolymer-composites[J]. Materials Letters, 2018, 233: 1-3. [19] Saccani A, Manzi S, Lancellotti I, et al.Composites obtained by recycling carbon fibre/epoxy composite wastes in building materials[J]. Construction and Building Materials, 2019, 204: 296-302. [20] Cheng Huanbo, Sun Yu, Wang Xin, et al.Recycling carbon fiber/epoxy resin composites by thermal excita-tion oxide semiconductors[J]. Fibers and Polymers, 2019, 20(4): 760-769. [21] Zhao Xu, Wang Xionglei, Tian Fei, et al.A fast and mild closed-loop recycling of anhydride-cured epoxy through microwave-assisted catalytic degradation by trifunctional amine and subsequent reuse without separa-tion[J]. Green Chemistry, 2019, 21(9): 2487-2493. [22] Yang Jingxian, Li Tong, Ning Yongzhong, et al.Molecular characterization of resistance, virulence and clonality in vancomycin-resistant enterococcus faecium and enterococcus faecalis: a hospital-based study in Beijing, China[J]. Infection, Genetics and Evolution, 2015, 33: 253-260. [23] 杨世芳, 杨晓磊, 谢军, 等. 黑曲霉菌对废旧电缆聚乙烯降解效果及反应机理研究[J]. 电工技术学报, 2024, 39(1): 76-87, 98. Yang Shifang, Yang Xiaolei, Xie Jun, et al.Degrada-tion effect and degradation mechanism of Aspergillus niger on polyethylene components of waste cables[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 76-87, 98. [24] Li Juan, Xu Pinglai, Zhu Yingke, et al.A promising strategy for chemical recycling of carbon fiber/thermoset composites: self-accelerating decomposition in a mild oxidative system[J]. Green Chemistry, 2012, 14(12): 3260-3263. [25] Zhu Jihua, Chen Piyu, Su Meini, et al.Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin[J]. Green Chemistry, 2019, 21(7): 1635-1647. [26] 聂常洪, 宗家欢, 袁纪贤. 二丙二醇甲醚/二丙二醇丁醚在水性木器涂料中的应用[J]. 中国涂料, 2016, 31(9): 55-59. Nie Changhong, Zong Jiahuan, Yuan Jixian.Application of dipropylene glycol methyl ether/dipropylene glycol butyl ether in waterborne wood coatings[J]. China Coatings, 2016, 31(9): 55-59. [27] Wei M M, Stewart R.Mechanisms of permanganate oxidation. Ⅷ. Substituted benzylamines[J]. Journal of the American Chemical Society, 1966, 88(9): 1974-1979. [28] 易松, 肖增钧, 肖放, 等. 一种二丙二醇二甲醚的制备方法: CN108586210A[P].2018-09-28. [29] 张静, 张宏龙, 王定祥, 等. 强化高锰酸钾氧化体系中自由基的产生与利用研究进展[J]. 环境化学, 2021, 40(2): 487-496. Zhang Jing, Zhang Honglong, Wang Dingxiang, et al.Generation and utilization of radicals during enhanced permanganate oxidation: a review[J]. Environmental Chemistry, 2021, 40(2): 487-496. [30] 刘云鹏, 黎馨阳, 刘贺晨, 等. 基于亚胺键的香草醛基可降解环氧树脂综合性能研究[J]. 电工技术学报, 2025, 40(7): 2267-2281. Liu Yunpeng, Li Xinyang, Liu Hechen, et al.Comprehensive performance study of vanillin-based degradable epoxy resin based on imine bonding[J]. Transactions of China Electrotechnical Society, 2025, 40(7): 2267-2281. [31] 丁嘉乐, 贾倩倩, 李峰, 等. 高压绝缘用环氧树脂配方体系研究进展[J]. 绝缘材料, 2024, 57(12): 9-19. Ding Jiale, Jia Qianqian, Li Feng, et al.Research progress on epoxy resin formulation system for high-voltage insulation[J]. Insulating Materials, 2024, 57(12): 9-19. [32] 张重远, 苏铮, 李乐, 等. 轻质高绝缘复合芯体制备及其在66 kV复合横担中的应用[J]. 高压电器, 2024, 60(4): 56-64. Zhang Zhongyuan, Su Zheng, Li Le, et al.Preparation of light-weight and high insulation composite core and its application in 66 kV composite cross-arm[J]. High Voltage Apparatus, 2024, 60(4): 56-64. [33] Mertzel E, Koenig J L.Application of FT-IR and NMR to epoxy resins[M]//Dušek K. Epoxy Resins and Composites Ⅱ. Berlin/Heidelberg: Springer-Verlag, 2005: 73-112. [34] 王旗, 李喆, 尹毅. 微、纳米无机颗粒/环氧树脂复合材料击穿强度性能[J]. 电工技术学报, 2014, 29(12): 230-235. Wang Qi, Li Zhe, Yin Yi.The effect of micro and nano inorganic filler on the breakdown strength of epoxy resin[J]. Transactions of China Electrotech-nical Society, 2014, 29(12): 230-235. [35] Lubbers R J M, Dilokpimol A, Visser J, et al. Aspergillus Niger uses the peroxisomal CoA-dependent β-oxidative genes to degrade the hydroxycinnamic acids caffeic acid, ferulic acid, and p-coumaric acid[J]. Applied Microbiology and Biotechnology, 2021, 105(10): 4199-4211. [36] 刘贺晨, 孙章林, 刘云鹏, 等. 基于酯交换的可回收类玻璃化环氧树脂制备与性能研究[J]. 电工技术学报, 2023, 38(15): 4019-4029. Liu Hechen, Sun Zhanglin, Liu Yunpeng, et al.Preparation and properties of recyclable vitrified epoxy resin based on transesterification[J]. Trans-actions of China Electrotechnical Society, 2023, 38(15): 4019-4029.