Abstract:The new energy base plans to construct a grid type converter station to support the integration of new energy into the grid through direct current transmission, in scenarios far away from synchronous power sources. The short-circuit current on both sides of the new energy AC collection system power line in the base is provided by different types of power electronic converters, and the fault current exhibits limited, distorted characteristics and waveform distortion, resulting in random changes in the fundamental frequency amplitude and phase angle characteristics perceived by the protection device, causing deterioration of the differential protection action performance, and even the risk of refusal, making it difficult to ensure the safe operation of the system and urgently requiring new principles of longitudinal protection. The existing longitudinal protection research can be divided into frequency domain protection and time domain protection based on the utilized feature quantities. Therefore, existing frequency-domain feature-based protection relies on extremely high sampling frequencies and is susceptible to factors such as noise, while existing time-domain feature-based protection does not require extremely high sampling frequencies, but there is a risk of incorrect action performance in different scenarios. Therefore, this article proposes a new principle of longitudinal protection based on time-domain distribution entropy, which accurately distinguishes faults inside and outside the area by utilizing the difference in phase frequency characteristics of the currents on both sides. Compared with existing research on protection, it has better ability to withstand abnormal disturbances and solves the problem of decreased performance of differential protection in the absence of synchronous power supply. The protection performance was comprehensively tested and compared in different fault scenarios on the RTDS hardware in the loop experimental platform. The experimental results showed that the proposed protection can withstand a transition resistance of 150 Ω and 20 dB noise, and can ensure that the protection does not misoperate when encountering abnormal values.
刘昊霖, 贾科, 毕天姝, 李再男, 张旸. 基于时域分布熵的新能源基地汇集系统线路相似度保护[J]. 电工技术学报, 2025, 40(17): 5514-5525.
Liu Haolin, Jia Ke, Bi Tianshu, Li Zainan, Zhang Yang. Similarity Protection of New Energy Base Collection System Lines Based on Time-Domain Distribution Entropy. Transactions of China Electrotechnical Society, 2025, 40(17): 5514-5525.
[1] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3771. Chi Yongning, Liang Wei, Zhang Zhankui, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3771. [2] 董旭, 张峻榤, 王枫, 等. 风电经架空柔性直流输电线路并网的交直流故障穿越技术[J]. 电力系统自动化, 2016, 40(18): 48-55. Dong Xu, Zhang Junjie, Wang Feng, et al.AC and DC fault ride-through technology for wind power integration via VSC-HVDC overhead lines[J]. Automation of Electric Power Systems, 2016, 40(18): 48-55. [3] 郑涛, 章若竹, 吕文轩, 等. 基于故障主动控制的海上风电交流汇集线路时域距离保护[J]. 电工技术学报, 2025, 40(1): 122-138. Zheng Tao, Zhang Ruozhu, Lü Wenxuan, et al.Time-domain distance protection of offshore AC transmission lines based on fault active control considering distributed capacitance's impact[J]. Transactions of China Electrotechnical Society, 2025, 40(1): 122-138. [4] 王倩, 黄晶晶, 朱大锐, 等. 适用于大规模风电场的MMC-HVDC控制策略研究[J]. 西安理工大学学报, 2016, 32(3): 302-308. Wang Qian, Huang Jingjing, Zhu Darui, et al.Research on MMC-HVDC system control strategy for large-scale wind farms[J]. Journal of Xi'an University of Technology, 2016, 32(3): 302-308. [5] 刘昊霖, 贾科, 毕天姝, 等. 计及新能源耦合特性的柔直换流站短路电流解析[J/OL]. 电工技术学报, 1-9[2024-11-14].https://doi.org/10.19595/j.cnki.1000-6753.tces.241122. Liu Haolin, Jia Ke, Bi Tianshu, et al. Analysis of Short Circuit Current in Flexible DC Converter Stations Taking into Account the Coupling Characteristics of New Energy [J/OL] Journal of Electrical Engineering Technology, 1-9[2022-11-14]. https://doi.org/10.19595/j.cnki.1000-6753.tces.241122. [6] 李彦宾, 贾科, 毕天姝, 等. 电流差动保护在逆变型新能源场站送出线路中的适应性分析[J]. 电力系统自动化, 2017, 41(12): 100-105. Li Yanbin, Jia Ke, Bi Tianshu, et al.Adaptability analysis of current differential protection of outgoing transmission line emanating from inverter-interfaced renewable energy power plants[J]. Automation of Electric Power Systems, 2017, 41(12): 100-105. [7] 贾科, 杨哲, 朱正轩, 等. 基于电流幅值比的逆变型新能源场站送出线路T接纵联保护[J]. 电力自动化设备, 2019, 39(12): 82-88. Jia Ke, Yang Zhe, Zhu Zhengxuan, et al.Pilot protection based on current amplitude ratio for teed line in inverter-interfaced renewable energy power plants[J]. Electric Power Automation Equipment, 2019, 39(12): 82-88. [8] Chen Zilin, Lu Yuping.A novel pilot protection scheme for wind farm transmission line based on harmonic content ratio[C]//2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 2020: 1-6. [9] 段建东, 崔帅帅, 刘吴骥, 等. 基于电流频率差的有源配电网线路保护[J]. 中国电机工程学报, 2016, 36(11): 2927-2934. Duan Jiandong, Cui Shuaishuai, Liu Wuji, et al.Line protection based on current frequency difference for active distribution network[J]. Proceedings of the CSEE, 2016, 36(11): 2927-2934. [10] 郑黎明, 贾科, 毕天姝, 等. 基于结构相似度与平方误差的新能源场站送出线路纵联保护综合判据[J]. 电网技术, 2020, 44(5): 1788-1797. Zheng Liming, Jia Ke, Bi Tianshu, et al.Comprehensive criteria of pilot protection based on structural similarity and square error for outgoing line from renewable power plants[J]. Power System Technology, 2020, 44(5): 1788-1797. [11] 鲁月华, 樊艳芳, 罗瑞. 适用于交直流混联系统的时域全量故障模型判别纵联保护方案[J]. 电力系统保护与控制, 2020, 48(19): 81-88. Lu Yuehua, Fan Yanfang, Luo Rui.Principle of active distribution network pilot protection based on time domain model identification[J]. Power System Protection and Control, 2020, 48(19): 81-88. [12] 宋国兵, 王晨清, 唐吉斯, 等. 适用于风电接入系统的时域模型识别纵联保护新原理[J]. 电网技术, 2016, 40(11): 3580-3585. Song Guobing, Wang Chenqing, Tengis, et al. Novel pilot protection based on time-domain model identification for wind power integration[J]. Power System Technology, 2016, 40(11): 3580-3585. [13] 侯俊杰, 樊艳芳, 晁勤, 等. 基于时域全量故障模型相关性判别的集群风电送出线纵联保护[J]. 电力自动化设备, 2018, 38(7): 89-96. Hou Junjie, Fan Yanfang, Chao Qin, et al.Cluster wind power outgoing line pilot protection scheme based on time-domain full-frequency fault model correlation identification[J]. Electric Power Automation Equipment, 2018, 38(7): 89-96. [14] 李晔, 李斌, 刘晓明, 等. 基于反向行波幅值比的对称单极柔性直流系统行波方向保护[J]. 电工技术学报, 2023, 38(9): 2418-2434. Li Ye, Li Bin, Liu Xiaoming, et al.The direction protection based on the amplitude ratio of the backward traveling wave for the symmetrical monopole flexible DC system[J]. Transactions of China Electrotechnical Society, 2023, 38(9): 2418-2434. [15] 束洪春, 刘力滔, 唐玉涛, 等. 基于行波暂态能量的半波长输电线路高灵敏增强型纵联保护方案[J]. 电工技术学报, 2022, 37(24): 6372-6387. Shu Hongchun, Liu Litao, Tang Yutao, et al.Highly sensitive enhanced pilot protection of half-wavelength transmission line based on directional traveling wave energy[J]. Transactions of China Electrotechnical Society, 2022, 37(24): 6372-6387. [16] 郑黎明, 贾科, 侯来运, 等. 基于奇异值分解的海上风电接入柔直系统的交流线路保护[J]. 中国电机工程学报, 2020, 40(增刊1): 75-83. Zheng Liming, Jia Ke, Hou Laiyun, et al.AC line protection of offshore wind power connected to flexible direct system based on singular value decomposition[J]. Proceedings of the CSEE, 2020, 40(S1): 75-83. [17] 余越, 王聪博, 沙兆义, 等. 基于矩阵突变特征的风电经柔直送出交流线路保护[J]. 中国电机工程学报, 2023, 43(14): 5441-5450. Yu Yue, Wang Congbo, Sha Zhaoyi, et al.AC transmission line protection for wind farms integrated with VSC-HVDC system based on matrix mutation characteristics[J]. Proceedings of the CSEE, 2023, 43(14): 5441-5450. [18] 贾科, 郑黎明, 毕天姝, 等. 基于余弦相似度的风电场站送出线路纵联保护[J]. 中国电机工程学报, 2019, 39(21): 6263-6275. Jia Ke, Zheng Liming, Bi Tianshu, et al.Pilot protection based on cosine similarity for transmission line connected to wind farms[J]. Proceedings of the CSEE, 2019, 39(21): 6263-6275. [19] Yang Zhe, Liao Wenlong, Wang Hongyi, et al.Improved euclidean distance based pilot protection for lines with renewable energy sources[J]. IEEE Transactions on Industrial Informatics, 2022, 18(12): 8551-8562. [20] 谭珺敉, 彭晓涛, 李旭涛, 等. 基于协同控制优化风电-柔直并网惯性响应策略研究[J]. 电工技术学报, 2025, 40(5): 1355-1367. Tan Junyi, Peng Xiaotao, Li Xutao, et al.Optimization of inertia response strategy based on synergetic control for wind power integrating to power grid via VSC-HVDC[J]. Transactions of China Electro-technical Society, 2025, 40(5): 1355-1367 [21] 胡小康, 王中权, 綦晓, 等. 考虑最低惯量需求的海上风电与海岛微网频率交互控制策略[J]. 南方电网技术, 2023, 17(5): 80-90. Hu Xiaokang, Wang Zhongquan, Qi Xiao, et al.Interaction frequency regulation strategy between offshore wind farm and island microgrids considering minimum inertia requirement[J]. Southern Power System Technology, 2023, 17(5): 80-90. [22] 裴金鑫, 姚骏, 黄森, 等. 电网短路故障下新能源并网变换器的暂态同步机制及其自适应稳定控制策略[J]. 中国电机工程学报, 2022, 42(16): 5922-5934, 6167. Pei Jinxin, Yao Jun, Huang Sen, et al.Transient synchronization mechanism and adaptive stability control strategy for renewable energy grid-connected converter under grid faults[J]. Proceedings of the CSEE, 2022, 42(16): 5922-5934, 6167. [23] 贾科, 刘浅, 杨彬, 等. 计及锁相环动态特性的逆变电源故障暂态电流解析[J]. 电网技术, 2021, 45(11): 4242-4251. Jia Ke, Liu Qian, Yang Bin, et al.Transient fault current analysis of the inverter-interfaced renewable energy sources considering the dynamic characteristics of the phase-locked loop[J]. Power System Technology, 2021, 45(11): 4242-4251. [24] 刘天阳, 张玉红, 王蒙, 等. 考虑控制策略切换过程的双馈风力发电机组短路电流计算方法[J]. 中国电机工程学报, 2021, 41(10): 3330-3338, 3659. Liu Tianyang, Zhang Yuhong, Wang Meng, et al.Short-circuit current calculation method of doubly fed induction generator considering control strategy switching[J]. Proceedings of the CSEE, 2021, 41(10): 3330-3338, 3659. [25] Li Zilin, Hu Jiefeng, Chan K W.A new current limiting and overload protection scheme for distributed inverters in microgrids under grid faults[J]. IEEE Transactions on Industry Applications, 2021, 57(6): 6362-6374. [26] 黄少锋. 电力系统继电保护[M]. 北京: 中国电力出版社, 2015. [27] 张海啸, 王茜, 刘春明. 一种基于时钟差的双端数据同步方法[J]. 电力系统通信, 2011, 32(6): 44-47. Zhang Haixiao, Wang Qian, Liu Chunming.Double-side date synchronization method based on clock difference[J]. Telecommunications for Electric Power System, 2011, 32(6): 44-47. [28] 张保会, 尹项根, 索南加乐, 编电力系统继电保护[M]. 2版. 北京: 中国电力出版社, 2010. [29] 聂铭, 李猛, 和敬涵, 等.基于状态估计的大规模新能源送出线路纵联保护[J]. 电网技术, 2024, 48(5): 2189-2198. Nie Ming, Li Meng, He Jinghan, et al.Longitudinal protection of large-scale new energy transmission lines based on state estimation[J]. Power System Technology, 2024,48(5): 2189-2198. [30] 霍文君, 王伟, 李文. AnomalyDetect: 一种基于欧式距离的在线异常检测算法[J]. 中国科学技术大学学报, 2019, 49(7): 555-563, 571. Huo Wenjun, Wang Wei, Li Wen.AnomayDetect: an online distance-based anomaly detection algorithm[J]. Journal of University of Science and Technology of China, 2019, 49(7): 555-563, 571. [31] 高熠飞, 王建平, 李林峰. 基于柯西分布的水文序列异常值检测方法[J]. 河海大学学报(自然科学版), 2020, 48(4): 307-313. Gao Yifei, Wang Jianping, Li Linfeng.Outlier detection method of hydrological time series based on Cauchy distribution[J]. Journal of Hohai University (Natural Sciences), 2020, 48(4): 307-313.