Development Status and Research Overview of Propulsion Motors for eVTOL
Ju Xiaowei1, Long Jiaxing1, Zhang Fengge1, Cheng Yuan2, Cui Shumei2
1. Key Laboratory of Special Electric Machines and High Voltage Apparatus of Ministry of Education Shenyang University of Technology Shenyang 110870 China; 2. School of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China
Abstract:Electric vertical takeoff and landing aircraft (eVTOL), often referred to as electric flying cars, offer significant advantages over land-based electric vehicles (EVs), such as the ability to take off and land vertically, bypass traffic congestion, and provide an environmentally friendly alternative. As a result, eVTOL holds great promise for future applications and has become a hotspot in sustainable transportation. These innovative aerial platforms are expected to play a pivotal role in accelerating efforts toward achieving carbon peaking and carbon neutrality goals. However, the development of propulsion motors for eVTOL represents a significant challenge. Research into eVTOL propulsion motors is still in its early stages. Though available technical data is limited, several key unresolved issues have emerged. (1) The selection of the final topological configurations of eVTOL propulsion motors remains uncertain. (2) The optimal design approach of the eVTOL propulsion system has yet to be determined. (3) The implementation of novel materials and advanced manufacturing processes requires further exploration. (4) Comprehensive reliability assurance methods are still under development. Scholars worldwide have undertaken preliminary studies on eVTOL propulsion motors by analyzing aircraft configurations and operational requirements. Notable advancements have been made, including the development of high-power-density motor designs with optimized electromagnetic configurations, innovative integrated propeller-motor cooling systems featuring air-cooled designs, and advanced thermal management solutions using in-slot direct cooling with heat pipe technology. Significant progress has also been made in winding technology, particularly with the implementation of asymmetric high-density winding configurations. To enhance the reliability of propulsion motor systems, researchers have pioneered several breakthrough technologies, including multi-phase asymmetric winding arrangements that improve fault tolerance, integrated modular motor drive (IMMD) systems for better integration of power electronics, and multi-motor cooperative control architectures that ensure stable eVTOL operations. Additionally, the incorporation of cutting-edge manufacturing techniques, such as metal additive manufacturing (3D printing) and the use of wide-bandgap semiconductor devices like silicon carbide (SiC), has led to substantial improvements in propulsion motor performance, including increased power density, enhanced efficiency, and improved thermal management. This paper provides a comprehensive review of current propulsion motor technologies, covering the classification of eVTOL configurations and transportation parameters. It also examines the existing research in four key areas: (1) parameter determination and design methods for eVTOL propulsion motors, (2) high power/torque density implementations, (3) strategies for enhancing reliability, and (4) vibration/noise reduction techniques. Existing EV traction motors are compared, with a detailed analysis of the typical flight conditions and key design challenges. Finally, the paper summarizes the design approaches aimed at achieving high-density, high-reliability, and low-noise propulsion motors for eVTOLs. In conclusion, to meet the growing performance and reliability demands of eVTOL, future research will focus on four key areas. (1) The development of high-power/torque-density motor designs with innovative winding and rotor configurations; (2) The integration of advanced thermal management systems, including 3D printing and cooling techniques, such as air-cooling fins and in-slot heat pipe cooling; (3) Design strategies for improving reliability and reducing vibration/noise, including multi-phase windings, modularization, distributed drive technologies, and harmonic injection; (4) The development of unified electric propulsion systems capable of seamless ground-air operation and adaptability to multiple environments (ground, underwater, aerial).
鞠孝伟, 龙佳兴, 张凤阁, 程远, 崔淑梅. 电动飞行汽车用推进电机发展现状和研究综述[J]. 电工技术学报, 2025, 40(17): 5402-5421.
Ju Xiaowei, Long Jiaxing, Zhang Fengge, Cheng Yuan, Cui Shumei. Development Status and Research Overview of Propulsion Motors for eVTOL. Transactions of China Electrotechnical Society, 2025, 40(17): 5402-5421.
[1] Sayed E, Abdalmagid M, Pietrini G, et al.Review of electric machines in more-/ hybrid-/ turbo-electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2976-3005. [2] Pinto Neto E C, Baum D M, de Almeida J R, et al. A trajectory evaluation platform for urban air mobility (UAM)[J]. IEEE Transactions on Intelligent Trans-portation Systems, 2022, 23(7): 9136-9145. [3] U.S. Air Force. Agility prime[EB/OL]. (2022) [2025-03-25]. https://afresearchlab.com/wp-content/uploads/2022/03/AFWERX_Agility-Prime_FS_0222.pdf. [4] SkyDrive Inc. SkyDrive selected for innovation grant worth up to 12.4 billion yen by Japanese government[EB/OL]. (2023.10.20)[2025-03-25]. https://en.skydrive2020.com/archives/10308. [5] Debney D, Beddoes S, Foster M, et al. Zero-carbon emission aircraft concepts[EB/OL]. (2022.03) [2025-03-25]. https://www.ati.org.uk/wp-content/uploads/2022/03/FZO-AIN-REP-0007-FlyZero-Zero-Carbon-Emission-Aircraft-Concepts.pdf. [6] European Union. Commission implementing regu-lation (EU)[EB/OL]. (2023-08-17)[2025-03-25]. https://eurlex.europa.eu/eli/reg_impl/2024/1111/oj. [7] 飞行汽车evtol之家. 中国将在合肥、杭州、深圳、苏州、成都、重庆六城市开展eVTOL试点[EB/OL]. (2024-11-26) [2025-03-25]. https://mp.weixin.qq.com/s/ttIfjpM8ODa9kjIz1JIVdw. [8] Electric VTOL.X Peng Aero HT Flying Car (concept design)[EB/OL]. [2025-03-25].https://evtol.news/xpeng-ht-aero-flying-car. [9] Wiegand D, Mcintosh A, Yemsi Y, et al. A revolution in sustainable regional transport[EB/OL]. (2021-06-15) [2025-03-25]. https://lilium.com/files/redaktion/refresh_feb2021/investors/20210615_Lilium_Analyst%20Presentation.pdf. [10] 陈起旭, 王群京, 钱喆, 等. 小型全电/混动飞机技术路线与动力系统综述[J]. 中国电机工程学报, 2024, 44(12): 4966-4986. Chen Qixu, Wang Qunjing, Qian Zhe, et al.Overview of the technical roadmap and powertrain system for small all-electric or hybrid aircraft[J]. Proceedings of the CSEE, 2024, 44(12): 4966-4986. [11] 上海通用航空行业协会. 南航通航与沃兰特联合发布《客运eVTOL应用与市场白皮书》[R]. 2023. [12] 鞠孝伟. SiC逆变器驱动下车用扁线绕组永磁同步电机关键问题研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. Ju Xiaowei.Research on key issues of permanent magnet synchronous motor with hairpin winding for electric vehicle driven by SiC inverter[D]. Harbin: Harbin Institute of Technology, 2022. [13] 张少昆, 孙微, 范涛, 等. 基于分立器件并联的高功率密度碳化硅电机控制器研究[J]. 电工技术学报, 2023, 38(22): 5999-6014. Zhang Shaokun, Sun Wei, Fan Tao, et al.Research on high power density silicon carbide motor controller based on parallel connection of discrete devices[J]. Transactions of China Electrotechnical Society, 2023, 38(22): 5999-6014. [14] 鞠孝伟, 张凤阁, 程远, 等. 车用驱动电机扁线绕组关键问题研究综述[J]. 中国电机工程学报, 2024, 44(15): 6181-6199. Ju Xiaowei, Zhang Fengge, Cheng Yuan, et al.Overview of key issues of flat wire winding of traction motor for electric vehicles[J]. Proceedings of the CSEE, 2024, 44(15): 6181-6199. [15] Nuzzo S, Barater D, Gerada C, et al.Hairpin windings: an opportunity for next-generation E-motors in trans-portation[J]. IEEE Industrial Electronics Magazine, 2022, 16(4): 52-59. [16] Zhang Fengyu, Gerada D, Xu Zeyuan, et al.A thermal modeling approach and experimental validation for an oil spray-cooled hairpin winding machine[J]. IEEE Transactions on Transportation Electrification, 2021, 7(4): 2914-2926. [17] Liu Chuan, Xu Zeyuan, Gerada D, et al.Experimental investigation on oil spray cooling with hairpin windings[J]. IEEE Transactions on Industrial Elec-tronics, 2020, 67(9): 7343-7353. [18] Aircraft drag reduction system and internally cooled motor system and aircraft using same: US20190329859[P].2019-10-31. [19] The electric VTOL news[EB/OL]. Available: https://evtol.news/. [20] X FIRA. 深观启元. 中国顶级eVTOL公司之时的科技[EB/OL]. (2024-09-15) [2025-03-25]. https://mp.weixin.qq.com/s/p7cFFHojLURU1I4xaZRk8w. [21] Xiang Senwei, Xie Anhuan, Ye Minxiang, et al.Autonomous eVTOL: a summary of researches and challenges[J]. Green Energy and Intelligent Trans-portation, 2024, 3(1): 100140. [22] Xu Lei, Liu Hao, Zhu Xiaoyong, et al.Multiple-mode current control for a hybrid-excitation axial flux switching permanent magnet motor considering driving cycles[J]. IEEE Transactions on Industrial Electronics, 2024, 71(1): 204-214. [23] Yamada Y. Weight reduction, cooling performance,reliability: key requirements for air mobility motors mechanism of motors for DENSO's flying cars[EB/OL]. (2021-09-13) [2025-03-25]. https://www.denso.com/global/en/news/newsroom/2021/20210913-g03/. [24] DOE Office. More than flying cars: eVTOL battery analysis reveals unique operating demands[EB/OL]. (2024-3-12) [2025-03-25]. Available: https://www.ornl.gov/news/more-flying-cars-evtol-battery-analysis-reveals-unique-operating-demands. [25] Ramesh P, Lenin N C.High power density electrical machines for electric vehicles: comprehensive review based on material technology[J]. IEEE Transactions on Magnetics, 2019, 55(11): 0900121. [26] Petrov I, Martikainen I, Poutiainen I, et al.Hairpin winding with direct oil cooling[C]//2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 2024: 1-7. [27] DENSO Corporation Honeywell International, Inc. DENSO, honeywell co-develop E-motor for lilium's all-electric jet[EB/OL]. (2022-05-24) [2025-03-25]. https://www.denso.com/global/en/news/newsroom/2022/20220524-g01/. [28] Philip Butterworth-Hayes. H3X launches eVTOL electric motor “three times more efficient than current types”[EB/OL]. (2020-11-11) [2025-03-25]. https://www.urbanairmobilitynews.com/air-taxis/h3x-launches-evtol-electric-motor-three-times-more-efficient-than-current-types/. [29] Airbus. City airbus nextgen[EB/OL].[2025-03-25]. https://www.airbus.com/en/innovation/energy-transition/hybrid-and-electric-flight/cityairbus-nextgen. [30] Magicall. Power your aircraft to new heights[EB/OL].[2025-03-25]. https://www.magicall.biz/products/integrated-motor-controller-magidrive/. [31] Vertical. New VX4 prototype completes first tethered piloted flight[EB/OL]. (2024-07-25) [2025-03-25]. https://vertical-aerospace.com/wp-content/uploads/2024/07/New-VX4-prototype-completes-first-tethered-piloted-flight.pdf. [32] Christie R J, Dubois A and Derlaga J M. Cooling of electric motors used for propulsion on SCEPTOR[EB/OL]. (2017-04) [2025-03-25]. https://ntrs.nasa.gov/api/citations/20170004363/downloads/20170004363.pdf. [33] Hirschberg M. Archer's midnight showing[EB/OL]. (2023-01-11) [2025-03-25]. https://evtol.news/news/archers-midnight-showing. [34] Archer. The leading-edge distinctive design & performance[EB/OL].[2025-03-25]. https://archer.com/aircraft. [35] Archer. Archer aviation midnight[EB/OL].[2025-03-25]. https://evtol.news/archer/. [36] Archer. Archer open house powertrain presen-tation[EB/OL].[2025-3-25]. Available: https://youtu.be/uCY9tHwYUBs. [37] 时的科技. 时的科技与赛峰集团就E20配备赛峰电机达成合作[EB/OL]. (2022-05-31) [2025-03-25]. https://www.tcabtech.com/en/News/info.aspxitemid=194. [38] Safran Electric. Safran group strengthens its power products by launching generators and motors, GENEUS,ENGINeUS series[EB/OL]. (2018-07-16) [2025-3-25]. https://www.safran-group.com/news/safran-strengthens-its-electrical-offer-launch-its-ranges-electric-generators-and-motors-geneus-and-2018-07-16. [39] 吉利科技集团. eVTOL产品[EB/OL].[2025-03-25]. Available: https://www.geelytech.com/aviation. [40] Risen T. Evolito's breakthrough axial motors[EB/OL]. (2024-04-16) [2025-03-25]. https://evtol.news/news/evolitos-breakthrough-axial-motors. [41] Magnomatics. High performance motor for EVTOLs and fixed wing aircraft[EB/OL].[2025-03-25]. https://www.magnomatics.com/_files/ugd/d44083_d6e01f20e516422ca69bc45c20c139ce.pdf. [42] Tallerico T, Cameron Z A, Scheidler J J, et al.Outer stator magnetically geared motors for electrified urban air mobility vehicles[C]//AIAA Propulsion and Energy 2020 Forum, Virtual Event, 2020: 3563. [43] Scheidler J J, Asnani V M, Tallerico T F.NASA's magnetic gearing research for electrified aircraft propulsion[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Cincinnati, OH, USA, 2018: 1-12. [44] 曲荣海, 李大伟, 赵钰. 磁场调制电机的由来、发展与挑战[J]. 中国电机工程学报, 2024, 44(18): 7361-7381. Qu Ronghai, Li Dawei, Zhao Yu.The origin, deve-lopment and challenge of flux modulation machine[J]. Proceedings of the CSEE, 2024, 44(18): 7361-7381. [45] Lauren N.Big brushless motor manufacturers for drones and eVTOL[EB/OL]. Available: https://www.tytorobotics.com/blogs/articles/brushless-motor-manufacturers-for-evtol-and-aviation. [46] 关涛, 刘大猛, 何永勇. 永磁轮毂电机技术发展综述[J]. 电工技术学报, 2024, 39(2): 378-396. Guan Tao, Liu Dameng, He Yongyong.Review on development of permanent magnet in-wheel motors[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 378-396. [47] Duffy M, Sevier A E, Hupp R, et al.Propulsion scaling methods in the era of electric flight[C]//2018 AIAA/IEEE Electric Aircraft Technologies Sym-posium, Cincinnati, Ohio, 2018: 4978. [48] 刘佶炜, 狄冲, 李仕豪, 等. 基于不同绕组形式双定子低速大转矩永磁直驱电机转矩脉动的分析与抑制[J]. 电工技术学报, 2024, 39(12): 3646-3657. Liu Jiwei, Di Chong, Li Shihao, et al.Analysis and mitigation of torque ripple of a dual-stator low-speed high-torque permanent magnet machine with different winding forms[J]. Transactions of China Electro-technical Society, 2024, 39(12): 3646-3657. [49] 于丰源, 陈昊, 王星, 等. 不同定子绕组结构双定子轴向磁通开关磁阻电机性能对比研究[J]. 电工技术学报, 2024, 39(24): 7728-7741, 7776. Yu Fengyuan, Chen Hao, Wang Xing, et al.Comparative study on the double stator axial flux switched reluctance motors with different winding structures[J]. Transactions of China Electrotechnical Society, 2024, 39(24): 7728-7741, 7776. [50] Cheng Ming, Han Peng, Buja G, et al.Emerging multiport electrical machines and systems: past developments, current challenges, and future pro-spects[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5422-5435. [51] Mngomezulu Z, Mlonzi M, Akuru U B, et al.Overview of dual-port machines for wind power gen-erator applications[C]//2024 IEEE PES/IAS Power-Africa, Johannesburg, South Africa, 2024: 1-5. [52] Wang Yijing, Deng Yuxiang, Wang Haoyu, et al.Terminal constraint-free model predictive longitu-dinal control for unmanned ground vehicles with driving force table[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3051-3062. [53] Yokota K, Fujimoto H.Aerodynamic force control for tilt-wing eVTOL using airflow vector estimation[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4163-4172. [54] Selema A, Ibrahim M N, Sergeant P.Additively manufactured ultralight shaped-profile windings for HF electrical machines and weight-sensitive appli-cations[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4313-4324. [55] Wu Fan, EL-Refaie A M, Al-Qarni A. Additively manufactured hollow conductors integrated with heat pipes: design tradeoffs and hardware demonstration[J]. IEEE Transactions on Industry Applications, 2021, 57(4): 3632-3642. [56] 朱新凯, 刘雅斌, 王景霞, 等. 基于非支配排序遗传算法与神经网络的20MW双定子超导磁场调制电机优化设计[J/OL]. 中国电机工程学报, 2024: 1-12. (2024-09-14). https://link.cnki.net/doi/10.13334/j.0258-8013.pcsee.240973. Zhu Xinkai, Liu Yabin, Wang Jingxia, et al. Optimal design of 20MW double-stator superconducting magnetic field modulation electrical machine based on non-dominated sorting genetic algorithm and neural network[J/OL]. Proceedings of the CSEE, 2024: 1-12. (2024-09-14). https://link.cnki.net/doi/10.13334/j.0258-8013.pcsee.240973. [57] 周晓易, 郭晓坚, 邹圣楠, 等. 兆瓦级航空超导发电机设计及电磁性能分析[J]. 航空科学技术, 2024, 35(11): 84-94. Zhou Xiaoyi, Guo Xiaojian, Zou Shengnan, et al.Design of a megawatt class airborne superconducting generator and analysis on electromagnetic perfor-mance[J]. Aeronautical Science & Technology, 2024, 35(11): 84-94. [58] Raminosoa T, Aytug T.Impact of ultra-conducting winding on the power density and performance of non-heavy rare earth traction motors[C]//2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 2019: 2107-2114. [59] Cheng Yuan, Wang Yao, Yao Kai, et al.Impact of copper matrix materials on the performance of permanent magnet synchronous motor[C]//2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 2022: 1-5. [60] Islam M S, Mikail R, Husain I.Slotless lightweight motor for aerial applications[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5789-5799. [61] 刘炎. 新型永磁聚磁式同步磁阻电机研究[D]. 济南: 山东大学, 2021. Liu Yan.Research on the novel permanent magnet concentrated-flux synchronous reluctance motor[D]. Jinan: Shandong University, 2021. [62] MONOist. Large scale production of high saturation magnetic flux density and low iron loss core materials using the world's first manufacturing process[EB/OL]. (2024-08-27) [2025-03-25]. https://monoist.itmedia.co.jp/mn/articles/2408/27/news074.html. [63] Muthusamy M, Hendershot J, Pillay P.Design of a spoke type PMSM with SMC stator core for traction applications[J]. IEEE Transactions on Industry Applications, 2023, 59(2): 1418-1436. [64] Liu Chengcheng, Lei Gang, Wang Tianshi, et al.Comparative study of small electrical machines with soft magnetic composite cores[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1049-1060. [65] Emotres. Comparation Radial GO and Axial motors technology[EB/OL].https://emotres.com/radial-go-and-axial-motors-technology/. [66] 于占洋, 胡旭阳, 李岩, 等. 新型强迫风冷散热结构在高功率密度外转子表贴式PMSM上应用分析[J]. 电工技术学报, 2023, 38(24): 6668-6678. Yu Zhanyang, Hu Xuyang, Li Yan, et al.Application analysis of novel forced air-cooled in outer rotor surface-mounted PMSM with high power density[J]. Transactions of China Electrotechnical Society, 2023, 38(24): 6668-6678. [67] Wrobel R, McGlen R J. Opportunities and challenges of employing heat-pipes in thermal management of electrical machines[C]//2020 International Confer-ence on Electrical Machines (ICEM), Gothenburg, Sweden, 2020: 961-967. [68] Swanke J A, Jahns T M.Reliability analysis of a fault-tolerant integrated modular motor drive for an urban air mobility aircraft using Markov chains[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4523-4533. [69] Zou Zihan, Liu Senyi, Kang Jinsong.Degradation mechanism and online electrical monitoring techniques of stator winding insulation in inverter-fed machines: a review[J]. World Electric Vehicle Journal, 2024, 15(10): 444. [70] Xie Yanyan, Zhang Julia, Leonardi F, et al.Voltage stress modeling and measurement for random-wound machine windings driven by inverters[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 3536-3548. [71] 鞠孝伟, 程远, 杨明亮, 等. SiC逆变器高频脉冲电压对Hairpin绕组绝缘安全的影响分析[J]. 电工技术学报, 2021, 36(24): 5115-5124. Ju Xiaowei, Cheng Yuan, Yang Mingliang, et al.Influence analysis of high frequency pulse voltage of SiC inverter on insulation safety of hairpin winding[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5115-5124. [72] Ju Xiaowei, Cheng Yuan, Yang Mingliang, et al.Voltage stress calculation and measurement for hairpin winding of EV traction machines driven by SiC MOSFET[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 8803-8814. [73] Liang Dawei, Zhu Ziqiang, Nilifard R, et al.Novel high-order lumped-parameter thermal models for predicting spatial temperature distribution in elec-trical machines[J]. IEEE Transactions on Transpo-rtation Electrification, 2025, 11(2): 6675-6689. [74] Liang Dawei, Zhu Ziqiang, Dey A.High-fidelity lumped-parameter thermal models for assessing cooling techniques of PMSMs in EV applications[J]. CES Transactions on Electrical Machines and Systems, 2025, 9(1): 1-14. [75] Ju Xiaowei, Zhang Yue, Liu Guangwei, et al.Interturn voltage stress comparison and analysis of different typology of hairpin windings for EV traction machines[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 1257-1267. [76] Ji Yatai, Giangrande P, Zhao Weiduo, et al.Lifetime model for inverter-fed electrical machines windings including thermal aging and partial discharge risk[J]. IEEE Transactions on Transportation Electrification, 2025, 11(1): 4371-4382. [77] Wang Peng, Ma Shijin, Akram S, et al.Design of an effective antenna for partial discharge detection in insulation systems of inverter-fed motors[J]. IEEE Transactions on Industrial Electronics, 2022, 69(12): 13727-13735. [78] Ju Xiaowei, Zhang Yue, Xue Zhiwei, et al.Moving towards the reliability-oriented design of hairpin winding for EV traction machines driven by SiC inverter[J]. CES Transactions on Electrical Machines and Systems, 2025, 9(1): 26-35. [79] Hwang S W, Son D K, Park S H, et al.Design and analysis of dual stator PMSM with separately controlled dual three-phase winding for eVTOL propulsion[J]. IEEE Transactions on Transportation Electrification, 2022, 8(4): 4255-4264. [80] Wang Jiyao, Li Ye, Han Yehui.Integrated modular motor drive design with GaN power FETs[J]. IEEE Transactions on Industry Applications, 2015, 51(4): 3198-3207. [81] Zhao Tianxu, Wu Shaopeng, Cui Shumei.Multiphase PMSM with asymmetric windings for more electric aircraft[J]. IEEE Transactions on Transportation Electrification, 2020, 6(4): 1592-1602. [82] 匡志. 全电飞机用十五相永磁同步电机驱动控制系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. Kuang Zhi.Research on fifteen-phase permanent magnet synchronous motor drive control system for all-electric aircraft[D]. Harbin: Harbin Institute of Technology, 2021. [83] 翁卢晖. 面向分布式电推进飞机的多永磁电机协同控制策略研究[D]. 南京: 南京航空航天大学, 2022. Weng Luhui.Research on cooperative control strategy of multiple permanent magnet motors for distributed electric propulsion aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. [84] 张超羽, 张成明, 李立毅, 等. 基于螺旋桨负载的电推进系统线性/非线性自抗扰混合控制方法研究[J]. 中国电机工程学报, 2023, 43(15): 6064-6075. Zhang Chaoyu, Zhang Chengming, Li Liyi, et al.Research on linear/nonlinear active disturbance reje-ction hybrid control method for electric propulsion system based on propeller load[J]. Proceedings of the CSEE, 2023, 43(15): 6064-6075. [85] 孙鹏程, 贾少锋, 梁得亮, 等. 冗余电机拓扑与应用综述及发展展望[J]. 电工技术学报, 2025, 40(6): 1729-1745. Sun Pengcheng, Jia Shaofeng, Liang Deliang, et al.Overview and prospect of redundancy machines: topologies and applications[J]. Transactions of China Electrotechnical Society, 2025, 40(6): 1729-1745. [86] 孙玉华, 赵文祥, 吉敬华, 等. 高转矩性能多相组永磁电机及其关键技术综述[J]. 电工技术学报, 2023, 38(6): 1403-1420. Sun Yuhua, Zhao Wenxiang, Ji Jinghua, et al.Overview of multi-star multi-phase permanent magnet machines with high torque performance and its key technologies[J]. Transactions of China Electro-technical Society, 2023, 38(6): 1403-1420. [87] 毛彦欣, 赵文祥. 径向磁通永磁同步电机电磁振噪综述[J]. 中国电机工程学报, 2025, 45(9): 3667-3685. Mao Yanxin, Zhao Wenxiang.Overview of electro-magnetic vibration and noise in radial-flux permanent magnet synchronous machine[J]. Proceedings of the CSEE, 2025, 45(9): 3667-3685. [88] 刘栋良, 詹成根, 屈峰, 等. 无人机17 kW电机振动噪声分析与巡航转速下尖端噪声优化[J]. 电工技术学报, 2024, 39(6): 1749-1763. Liu Dongliang, Zhan Chenggen, Qu Feng, et al.Vibration noise analysis and tip noise optimization of unmanned aerial vehicle 17 kW motor at cruise speed[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1749-1763. [89] 李泽星, 夏加宽, 刘铁法, 等. 基于分段交错不等磁极的表贴式永磁电机极频振动的削弱[J]. 电工技术学报, 2023, 38(4): 945-956. Li Zexing, Xia Jiakuan, Liu Tiefa, et al.Reduction of pole-frequency vibration of surface-mounted per-manent magnet synchronous machines with piecewise stagger unequal poles[J]. Transactions of China Electrotechnical Society, 2023, 38(4): 945-956. [90] 汪波, 徐文翰, 查陈诚, 等. 多三相分布式绕组和集中式绕组永磁磁阻电机对比研究[J]. 电工技术学报, 2024, 39(10): 2984-2994. Wang Bo, Xu Wenhan, Zha Chencheng, et al.Comparative study on triple 3-phase PMA-SynRM with distributed winding and concentrated winding[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 2984-2994. [91] Wang Jiabin, Yuan Xibo, Atallah K.Design optimi-zation of a surface-mounted permanent-magnet motor with concentrated windings for electric vehicle appli-cations[J]. IEEE Transactions on Vehicular Techno-logy, 2013, 62(3): 1053-1064. [92] Abdelrahman A, Sahu A, Emery N, et al.Multi-physics design platform for a high power density multi-phase IPM traction motor: analysis and simulation[C]//2022 IEEE Transportation Electrifi-cation Conference & Expo (ITEC), Anaheim, CA, USA, 2022: 92-96. [93] Dimier T, Cossale M, Wellerdieck T.Comparison of stator winding technologies for high-speed motors in electric propulsion systems[C]//2020 International Conference on Electrical Machines (ICEM), Gothenburg, Sweden, 2020: 2406-2412. [94] 钱喆, 刘同鑫, 邓文哲, 等. 电流谐波注入的车用永磁同步驱动电机振动噪声抑制[J]. 电机与控制学报, 2022, 26(7): 115-124. Qian Zhe, Liu Tongxin, Deng Wenzhe, et al.Vibration and noise suppression of permanent magnet synchronous drive motor with harmonic current injection[J]. Electric Machines and Control, 2022, 26(7): 115-124. [95] Miyama Y, Ishizuka M, Kometani H, et al.Vibration reduction by applying carrier phase-shift PWM on dual three-phase winding permanent magnet syn-chronous motor[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 5998-6004.