Abstract:With the continuous progress of economy and society, the greenhouse effect problem has been increasingly emerging. In order to achieve the "dual-carbon" goal, the use of renewable energy such as wind power is the fundamental way to reduce carbon emissions, and carbon capturing is a direct method to reduce carbon emissions. Carbon capture power plants are well suited to wind power because carbon capture power plants have fast response speed. However, wind power has inherent volatility, and the sudden rise and fall of wind power will affect electric-carbon coordinated performances of carbon capture power plants. The energy can be stored and released by increasing or decreasing the solution volume in the liquid storage tank of the carbon capture equipment. The ability of energy shifting is called the internal energy time shift characteristics, which provides a way to solve the above problems. This paper solves the dispatch problem of wind power ramp through the flexible call of liquid storage tanks in carbon capture plants. Firstly, a mathematical model of carbon capture power plants is constructed. The correlation between the storage and release energy brought by the increase and decrease of the solution volume of the liquid storage tank and the energy consumption of the carbon capture equipment is analyzed. Then the bidirectional regulation ability of the liquid storage tank is studied. Secondly, the up-hill carbon advance compensation and down-hill carbon lag compensation dispatch strategies are proposed, and the liquid storage tank is adjusted in both directions to achieve electricity-carbon decoupling of the carbon capture power plant. Before wind power ramp up, by using the up-hill carbon advance compensation dispatch strategy, the desorption of solution is reduced and the solution is stored in the liquid storage tank. When wind power ramp events occur, the solution stored in the liquid storage tank can be desorbed to increase the carbon capture energy consumption. As a result, the net output of carbon capture plants is reduced to match the wind power ramp up. The wind curtailment problem is decreased by using the up-hill carbon advance compensation dispatch strategy. When wind power ramp down, by using the down-hill carbon lag compensation dispatch strategy the desorption of solution volume is reduced and the solution is stored in the liquid storage tank to decrease the carbon capture energy consumption. As a result, the net output of carbon capture plants is increased to match the wind power ramp down. The load cutting problems can be decreased by using the down-hill carbon lag compensation dispatch strategy. After wind power ramp down, the stored solution in the liquid storage tank is lagging desorbed by carbon capture power plants. Finally, a low-carbon economic dispatch model that deals with wind power ramp is constructed and the power systems consisting of carbon capture power plants, high-carbon power plants and a wind farm are simulated to prove the effectiveness of the proposed dispatch strategy. The simulation results show that the carbon capture power plant using the up-hill and down-hill dispatch strategy can better reduce wind power curtailment and load shedding caused by wind power ramp. From the analysis of the calculation examples, the wind power curtailment rate decreases 31.57% and the load shedding rate decreases 22.45%. When wind power ramp events occur, carbon capture power plants using the dispatch strategy can fully utilize wind power and reduce carbon emissions and costs, and can provide faster and more flexible climbing adjustment capability to undertake climbing tasks.
韩丽, 王冲, 于晓娇, 喻洪波, 王晓静. 考虑风电爬坡灵活调节的碳捕集电厂低碳经济调度[J]. 电工技术学报, 2024, 39(7): 2033-2045.
Han Li, Wang Chong, Yu Xiaojiao, Yu Hongbo, Wang Xiaojing. Low-Carbon and Economic Dispatch Considering the Carbon Capture Power Plants with Flexible Adjustment of Wind Power Ramp. Transactions of China Electrotechnical Society, 2024, 39(7): 2033-2045.
[1] 舒印彪, 赵勇, 赵良, 等. “双碳”目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672. Shu Yinbiao, Zhao Yong, Zhao Liang, et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672. [2] Wang Yanwen, Sun Yanying, Li Yalong, et al.Risk assessment of power imbalance for power systems with wind power integration considering governor ramp rate of conventional units[J]. Electric Power Systems Research, 2023, 217: 109111. [3] 亢丽君, 王蓓蓓, 薛必克, 等. 计及爬坡场景覆盖的高比例新能源电网平衡策略研究[J]. 电工技术学报, 2022, 37(13): 3275-3288. Kang Lijun, Wang Beibei, Xue Bike, et al.Research on the balance strategy for power grid with high proportion renewable energy considering the ramping scenario coverage[J]. Transactions of China Electrote-chnical Society, 2022, 37(13): 3275-3288. [4] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(增刊1): 28-51. Huang Yuhan, Ding Tao, Li Yuting, et al.Decarbonization technologies and inspirations for the development of novel power systems in the context of carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(S1): 28-51. [5] 彭元, 娄素华, 吴耀武, 等. 考虑储液式碳捕集电厂的含风电系统低碳经济调度[J]. 电工技术学报, 2021, 36(21): 4508-4516. Peng Yuan, Lou Suhua, Wu Yaowu, et al.Low-carbon economic dispatch of power system with wind power considering solvent-storaged carbon capture power plant[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4508-4516. [6] Cui Yang, Zhang Cong, Deng Guibo, et al.Multi objective low carbon economic dispatch of power system considering integrated flexible operation of carbon capture power plant[C]//2021 Power System and Green Energy Conference (PSGEC), Shanghai, China, 2021: 321-326. [7] Guo Xusheng, Lou Suhua, Wu Yaowu, et al.Low-carbon operation of combined heat and power integrated plants based on solar-assisted carbon capture[J]. Journal of Modern Power Systems and Clean Energy, 2021, 10(5): 1138-1151. [8] 袁桂丽, 刘骅骐, 禹建芳, 等. 含碳捕集热电机组的虚拟电厂热电联合优化调度[J]. 中国电机工程学报, 2022, 42(12): 4440-4449. Yuan Guili, Liu Huaqi, Yu Jianfang, et al.Combined heat and power optimal dispatching in virtual power plant with carbon capture cogeneration unit[J]. Proceedings of the CSEE, 2022, 42(12): 4440-4449. [9] 崔杨, 谷春池, 付小标, 等. 考虑广义电热需求响应的含碳捕集电厂综合能源系统低碳经济调度[J]. 中国电机工程学报, 2022, 42(23): 8431-8446. Cui Yang, Gu Chunchi, Fu Xiaobiao, et al.Low-carbon economic dispatch of integrated energy system with carbon capture power plants considering generalized electric heating demand response[J]. Proceedings of the CSEE, 2022, 42(23): 8431-8446. [10] 周任军, 孙洪, 唐夏菲, 等. 双碳量约束下风电-碳捕集虚拟电厂低碳经济调度[J]. 中国电机工程学报, 2018, 38(6): 1675-1683, 1904. Zhou Renjun, Sun Hong, Tang Xiafei, et al.Low-carbon economic dispatch based on virtual power plant made up of carbon capture unit and wind power under double carbon constraint[J]. Proceedings of the CSEE, 2018, 38(6): 1675-1683, 1904. [11] 赵冬梅, 王浩翔, 陶然. 计及风电-负荷不确定性的风-火-核-碳捕集多源协调优化调度[J]. 电工技术学报, 2022, 37(3): 707-718. Zhao Dongmei, Wang Haoxiang, Tao Ran.A multi-source coordinated optimal scheduling model considering wind-load uncertainty[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 707-718. [12] 赵冬梅, 王浩翔, 陶然, 等. 含核电-碳捕集机组的直流跨区互联电网多源协调鲁棒经济调度策略[J]. 电网技术, 2022, 46(10): 4064-4077. Zhao Dongmei, Wang Haoxiang, Tao Ran, et al.Multi-source coordinated robust economic scheduling strategy of DC cross regional interconnected grid with nuclear power and carbon capture units[J]. Power System Technology, 2022, 46(10): 4064-4077. [13] 田丰, 贾燕冰, 任海泉, 等. 考虑碳捕集系统的综合能源系统“源-荷”低碳经济调度[J]. 电网技术, 2020, 44(9): 3346-3355. Tian Feng, Jia Yanbing, Ren Haiquan, et al.“Source-load” low-carbon economic dispatch of integrated energy system considering carbon capture system[J]. Power System Technology, 2020, 44(9): 3346-3355. [14] 孙太尉, 赵军, 邓帅, 等. 计及电价与碳交易的太阳能碳捕集电厂柔性运行性能分析[J]. 太阳能学报, 2020, 41(10): 202-208. Sun Taiwei, Zhao Jun, Deng Shuai, et al.Flexible operation of solar-assisted carbon capture power plant under carbon trading and electricity price[J]. Acta Energiae Solaris Sinica, 2020, 41(10): 202-208. [15] 贠韫韵, 张大海, 王小君, 等. 考虑光热电站及富氧燃烧捕集技术的电热气综合能源系统低碳运行优化[J]. 电工技术学报, 2023, 38(24): 6709-6726. Yun Yunyun, Zhang Dahai, Wang Xiaojun, et al.Low-carbon operational optimization of integrated electricity-heat-gas energy system considering concentrating solar power plant and oxygen-enriched combustion capture technology[J]. Transactions of China Electro-technical Society, 2023, 38(24): 6709-6726. [16] 陈海鹏, 陈晋冬, 张忠, 等. 计及灵活运行碳捕集电厂捕获能耗的电力系统低碳经济调度[J]. 电力自动化设备, 2021, 41(9): 133-139. Chen Haipeng, Chen Jindong, Zhang Zhong, et al.Low-carbon economic dispatching of power system considering capture energy consumption of carbon capture power plants with flexible operation mode[J]. Electric Power Automation Equipment, 2021, 41(9): 133-139. [17] 陈达鹏, 王健, 荆朝霞. 灵活运行方式下碳捕集电厂提供备用服务的决策模型[J]. 电力系统自动化, 2017, 41(12): 138-145. Chen Dapeng, Wang Jian, Jing Zhaoxia.Decision model of carbon capture power plant to provide reserve service under flexible operation[J]. Automation of Electric Power Systems, 2017, 41(12): 138-145. [18] 陈登勇, 刘方, 刘帅. 基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J]. 电网技术, 2022, 46(6): 2042-2054. Chen Dengyong, Liu Fang, Liu Shuai.Optimization of virtual power plant scheduling coupling with P2G-CCS and doped with gas hydrogen based on stepped carbon trading[J]. Power System Technology, 2022, 46(6): 2042-2054. [19] 崔杨, 邓贵波, 曾鹏, 等. 计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法[J]. 中国电机工程学报, 2022, 42(16): 5869-5886, 6163. Cui Yang, Deng Guibo, Zeng Peng, et al.Multi-time scale source-load dispatch method of power system with wind power considering low-carbon characteristics of carbon capture power plant[J]. Proceedings of the CSEE, 2022, 42(16): 5869-5886, 6163. [20] 王义军, 李梦涵, 齐岩. 计及碳捕集电厂综合灵活运行方式的含P2G综合能源系统低碳经济调度[J]. 电力自动化设备, 2023, 43(1): 1-8. Wang Yijun, Li Menghan, Qi Yan.Low-carbon economic dispatching of integrated energy system with P2G considering comprehensive and flexible operation mode of carbon capture power plant[J]. Electric Power Automation Equipment, 2023, 43(1): 1-8. [21] 崔杨, 邓贵波, 赵钰婷, 等. 考虑源荷低碳特性互补的含风电电力系统经济调度[J]. 中国电机工程学报, 2021, 41(14): 4799-4815. Cui Yang, Deng Guibo, Zhao Yuting, et al.Economic dispatch of power system with wind power considering the complementarity of low-carbon characteristics of source side and load side[J]. Proceedings of the CSEE, 2021, 41(14): 4799-4815. [22] 郭宇红. 燃煤电厂碳捕集技术及节能优化研究进展[J]. 山西电力, 2021(6): 46-49. Guo Yuhong.Research progress of carbon dioxide capture technology and energy-saving optimization in coal-fired power plants[J]. Shanxi Electric Power, 2021(6): 46-49. [23] Wang Zihe, Ye Peng, Wang Shicheng, et al.Power grid optimal dispatching strategy considering carbon trading mechanism[C]//2022 IEEE 2nd International Conference on Electronic Technology, Communication and Information (ICETCI), Changchun, China, 2022: 250-255. [24] 康重庆, 季震, 陈启鑫. 碳捕集电厂灵活运行方法评述与展望[J]. 电力系统自动化, 2012, 36(6): 1-10. Kang Chongqing, Ji Zhen, Chen Qixin.Review and prospects of flexible operation of carbon capture power plants[J]. Automation of Electric Power Systems, 2012, 36(6): 1-10. [25] Ge Xiangdi, Hou Hui, Hou Tingting, et al.Review of key technologies of low-carbon transition on the power supply side[C]//2022 IEEE 5th International Conference on Electronics Technology (ICET), Chengdu, China, 2022: 275-279. [26] 林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886. Lin Haizhou, Pei Aiguo, Fang Mengxiang.Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886. [27] 张东英, 代悦, 张旭, 等. 风电爬坡事件研究综述及展望[J]. 电网技术, 2018, 42(6): 1783-1792. Zhang Dongying, Dai Yue, Zhang Xu, et al.Review and prospect of research on wind power ramp events[J]. Power System Technology, 2018, 42(6): 1783-1792. [28] 周博, 艾小猛, 方家琨, 等. 计及超分辨率风电出力不确定性的连续时间鲁棒机组组合[J]. 电工技术学报, 2021, 36(7): 1456-1467. Zhou Bo, Ai Xiaomeng, Fang Jiakun, et al.Continuous-time modeling based robust unit commitment considering beyond-the-resolution wind power uncertainty[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1456-1467. [29] 陈海鹏, 陈晋冬, 张忠, 等. 计及灵活运行碳捕集电厂捕获能耗的电力系统低碳经济调度[J]. 电力自动化设备, 2021, 41(9): 133-139. Chen Haipeng, Chen Jindong, Zhang Zhong, et al.Low-carbon economic dispatching of power system considering capture energy consumption of carbon capture power plants with flexible operation mode[J]. Electric Power Automation Equipment, 2021, 41(9): 133-139. [30] Fu Chen, Guo Mingxing, Liu Panpan, et al.Optimal operation strategy of low-carbon integrated energy system considering power to gas and carbon capture technology[C]//2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 2022: 404-409. [31] 卢志刚, 隋玉珊, 冯涛, 等. 考虑储热装置与碳捕集设备的风电消纳低碳经济调度[J]. 电工技术学报, 2016, 31(17): 41-51. Lu Zhigang, Sui Yushan, Feng Tao, et al.Wind power accommodation low-carbon economic dispatch considering heat accumulator and carbon capture devices[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 41-51. [32] 刘英培,黄寅峰.考虑碳排权供求关系的多区域综合能源系统联合优化运行[J].电工技术学报, 2023, 38(13): 3459-3472. Liu Yingpei, Huang Yinfeng.Joint optimal operation of multi-regional integrated energy system considering the supply and demand of carbon emission rights[J]. Transactions of China Electrotechnical Society, 2023, 38(13): 3459-3472.