Equivalent Electric Field Strength Method used in Corona Test and Optimization Design of Double-Swinging Protectors for UHVAC Double Circuit Tension Support
Liu Peng1, Guo Yiyu1, Lin Rui2, Zhao Jiqian3, Quan Shanshan4
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China; 2. PowerChina Fujian Electric Power Engineering Co. Ltd Fuzhou 350003 China; 3. China Energy Construction Group Jiangsu Electric Power Design Institute Co. Ltd Nanjing 210036 China; 4. China Electric Power Research Institute Beijing 100192 China
Abstract:In terms of the corona discharge phenomenon of double-swinging protectors on an ultra high voltage alternating current(UHVAC) double-circuit transmission line, combined with finite element method and field strength equivalent method, the surface electric field of the double-swinging protectors, in the transmission line and the single-phase simplified test layout, was analyzed and optimized, besides the corona test voltage was obtained and the corona test was performed. The results show that shortening the effective swing arm length and increasing the pendulum radius can increase corona onset voltage effectively; The original double-swinging protectors of ellipsoidal pendulum failed to pass the corona test, suggested to replace it with a large-size hollow spherical pendulum and shorten the effective swing arm length to adjust the electric field characteristics on the premise of a certain total weight. After optimization, the double-swinging protectors has passed the three-phase transmission line test, without observed corona discharge. The research results can provide guidance for the design and manufacture of line fittings.
刘鹏, 郭伊宇, 林锐, 赵纪倩, 全姗姗. 应用电场强度等效法的特高压交流双回线路双摆防舞器电晕试验及优化设计[J]. 电工技术学报, 2022, 37(15): 3963-3972.
Liu Peng, Guo Yiyu, Lin Rui, Zhao Jiqian, Quan Shanshan. Equivalent Electric Field Strength Method used in Corona Test and Optimization Design of Double-Swinging Protectors for UHVAC Double Circuit Tension Support. Transactions of China Electrotechnical Society, 2022, 37(15): 3963-3972.
[1] 郭应龙, 李国兴, 尤传永. 输电线路舞动[M]. 北京: 中国电力出版社, 2003. [2] 刘昌盛, 刘和志, 姜丁尤, 等. 输电线路覆冰舞动研究综述[J]. 科学技术与工程, 2014, 14(24): 156-164. Liu Changsheng, Liu Hezhi, Jiang Dingyou, et al.Research overview on galloping of iced transmission lines[J]. Science Technology and Engineering, 2014, 14(24) : 156-164 [3] 黄斌, 徐姗姗, 苏文宇. 输电线路覆冰研究综述[J]. 电瓷避雷器, 2012(1): 27-32. Huang Bin, Xu Shanshan, Su Wenyu.Summary of research on icing of transmission lines[J]. Insulators and Surge Arresters, 2012(1): 27-32. [4] 向玲, 任永辉, 卢明, 等. 特高压输电线路防舞装置的应用仿真[J]. 高电压技术, 2016, 42(12): 3830-3836. Xiang Ling, Ren Yonghui, Lu Ming, et al.Simulation of anti-galloping device's application in UHV transmission line[J]. High Voltage Engineering, 2016, 42(12): 3830-3836. [5] 赵彬, 程永峰, 王景朝, 等. 2015年初湖北架空线路覆冰舞动灾害原因的理论分析与应对措施[J]. 振动与冲击, 2017, 36(10): 93-97. Zhao Bin, Cheng Yongfeng, Wang Jingchao, et al.Theoretical analysis and countermeasures on the galloping of iced overhead transmission lines in Hubei in early 2015[J]. Journal of Vibration and Shock, 2017, 36(10): 93-97. [6] 林锐, 李伟鹏, 赵彬, 等. 特高压交流大跨越线路防舞装置的选型及优化[J]. 电力勘测设计, 2021(5): 17-24. Lin Rui, Li Weipeng, Zhao Bin, et al.Selection and optimization of anti-galloping devices for AC UHV large-crossing transmission line[J]. Electric Power Survey and Design, 2021(5): 17-24. [7] 毕聪来, 蒋兴良, 韩兴波, 等. 采用扩径导线替代分裂导线的防冰方法[J]. 电工技术学报, 2020, 35(11): 2469-2477. Bi Conglai, Jiang Xingliang, Han Xingbo, et al.Anti-icing method of using expanded diameter conductor to replace bundle conductor[J]. Transactions of China Electrotechnical Society, 2020, 35(11): 2469-2477. [8] 蒋兴良, 侯乐东, 韩兴波, 等. 输电线路导线覆冰扭转特性的数值模拟[J]. 电工技术学报, 2020, 35(8): 1818-1826. Jiang Xingliang, Hou Ledong, Han Xingbo, et al.Numerical simulation of torsion characteristics of transmission line conductor[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1818-1826. [9] 黄亚飞, 蒋兴良, 任晓东, 等. 采用涡流自热环防止输电线路冰雪灾害的方法研究[J]. 电工技术学报, 2021, 36(10): 2169-2177. Huang Yafei, Jiang Xingliang, Ren Xiaodong, et al.Study on preventing icing disasters of transmission lines by use of eddy self-heating ring[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2169-2177. [10] 赵彬, 程永锋, 王景朝, 等. 阻尼间隔棒及双摆防舞器对特高压架空输电导线覆冰舞动特性的影响[J]. 高电压技术, 2016, 42(12): 3837-3843. Zhao Bin, Cheng Yongfeng, Wang Jingchao, et al.Effect of damping spacers and double-swinging protectors on iced galloping properties for UHV overhead transmission lines[J]. High Voltage Engineering, 2016, 42(12): 3837-3843. [11] 李勇伟, 袁俊, 赵全江, 等. 中国首条1000kV单回路交流架空输电线路的设计[J]. 中国电机工程学报, 2010, 30(1): 117-126. Li Yongwei, Yuan Jun, Zhao Quanjiang, et al.Design of the first 1000kV AC single-circuit over head transmission line in China[J]. Proceedings of the CSEE, 2010, 30(1): 117-126. [12] 周宏威, 邹军, 袁建生, 等. 复杂地形情况下高压交流输电线路电磁环境特性分析[J]. 电网技术, 2011, 35(9): 164-169. Zhou Hongwei, Zou Jun, Yuan Jiansheng, et al.Analysis on electromagnetic environment charac-teristics of high-voltage AC transmission lines passing through complex terrains[J]. Power System Technology, 2011, 35(9): 164-169 [13] 安冰, 丁燕生, 王伟, 等. 湿度对电晕笼中导线直流电晕特性的影响[J]. 电网技术, 2008, 32(24): 98-104. An Bing, Ding Yansheng, Wang Wei, et al.Influence of humidity on corona performance of DC conductor in corona cage[J]. Power System Technology, 2008, 32(24): 98-104. [14] 唐剑, 杨迎建, 李永双, 等. 特高压交流输电线路电晕效应的预测方法,Ⅰ:可听噪声[J]. 高电压技术, 2010, 36(11): 2679-2686. Tang Jian, Yang Yingjian, Li Yongshuang, et al.Prediction of corona effects generated from UHVAC transmission lines, I: audible noise[J]. High Voltage Engineering, 2010, 36(11): 2679-2686. [15] 唐剑, 杨迎建, 李永双, 等. 特高压交流输电线路电晕效应的预测方法,Ⅱ:无线电干扰[J]. 高电压技术, 2010, 36(12): 2942-2947. Tang Jian, Yang Yingjian, Li Yongshuang, et al.Prediction of corona effects generated from UHVAC transmission lines,Ⅱ: radio interference[J]. High Voltage Engineering, 2010, 36(12): 2942-2947. [16] 马爱清, 林鹏远, 迟杰, 等. UHVAC同塔双回输电线路表面电场强度分析[J]. 电力系统及其自动化学报, 2019, 31(6): 143-150. Ma Aiqing, Lin Pengyuan, Chi Jie, et al.Analysis of surface electric field of UHVAC one-tower double-circuit transmission line[J]. Proceedings of the CSU-EPSA, 2019, 31(6): 143-150. [17] 商全鸿, 赵彬. 分裂数及金具对特高压导线扭转刚度特性影响试验研究[J]. 电力系统保护与控制, 2018, 46(3): 128-132. Shang Quanhong, Zhao Bin.Experimental study on torsional stiffness properties of ultra-high-voltage conductor affected by bundle number and fittings[J]. Power System Protection and Control, 2018, 46(3): 128-132. [18] 王黎明, 高亚云, 卢明, 等. 特高压输电线路新型防舞技术计算[J]. 高电压技术, 2017, 43(8): 2541-2550. Wang Liming, Gao Yayun, Lu Ming, et al.Calculation on a new anti-galloping technique for UHV transmission lines[J]. High Voltage Engineering, 2017, 43(8): 2541-2550. [19] 卢明, 任永辉, 向玲, 等. 500 kV 水平布置输电线路相地间隔棒防舞仿真分析[J]. 高电压技术, 2017, 43(7): 2349-2354. Lu Ming, Ren Yonghui, Xiang Ling, et al.Simulation of phase-to-ground spacer for anti-galloping of 500 kV horizontal arranged transmission lines[J]. High Voltage Engineering, 2017, 43(7): 2349-2354. [20] 商全鸿, 赵彬. 架空输电线路防舞器排布方案效果评估技术研究[J]. 中国电力, 2017, 50(5): 121-125. Shang Quanhong, Zhao Bin.Research on performance evaluation technology of anti-galloping fittings in overhead transmission lines[J]. Electric Power, 2017, 50(5): 121-125. [21] 张博, 马杰, 张璐. 基于真型输电线路试验的双摆防舞器防舞性能评价体系研究[J]. 河南科技, 2015, 517(9): 111-114. Zhang Bo, Ma Jie, Zhang Lu.The study of anti-galloping assessment system of double pendulum damper based on transmission line test[J]. Journal of Henan Science and Technology, 2015, 517(9): 111-114. [22] 谢梁, 谷莉莉, 郑怀清, 等. 特高压交流刚性跳线金具电晕试验[J]. 高电压技术, 2009, 35(3): 470-474. Xie Liang, Gu Lili, Zheng Huaiqing, et al.Corona test for UHVAC rigid jumper[J]. High Voltage Engineering, 2009, 35(3): 470-474. [23] 杨熙, 李乃一, 廖晋陶, 等. 应用等效电场强度法的特高压交流双回耐张塔刚性跳线及金具电晕试验[J]. 电网技术, 2013, 37(12): 3571-3576. Yang Xi, Li Naiyi, Liao Jintao, et al.Equivalent electric field strength method used in corona test of rigid jumpers and fittings for UHVAC double circuit tension support[J]. Power System Technology, 2013, 37(12): 3571-3576. [24] 李永建, 闫鑫笑, 张长庚, 等. 基于磁-热-流耦合模型的变压器损耗计算和热点预测[J]. 电工技术学报, 2020, 35(21): 4483-4491. Li Yongjian, Yan Xinxiao, Zhang Changgeng, et al.Numerical prediction of losses and local overheating in transformer windings based on magnetic-thermal fluid model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4483-4491. [25] 周文俊, 滕陈源, 周远翔, 等. 正温度系数材料调控绝缘直流电场分布[J]. 电工技术学报, 2021, 36(14): 3063-3071. Zhou Wenjun, Teng Chenyuan, Zhou Yuan xiang, et al. Regulation of DC electric field distribution within insulation via positive temperature coefficient material[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3063-3071. [26] 陈宝辉, 邓捷, 孙易成, 等. 电场均匀性对细水雾短空气间隙工频放电特性的影响[J]. 电工技术学报, 2021, 36(8): 1734-1742. Chen Baohui, Deng Jie, Sun Yicheng, et al.Influence of electric field uniformity on power frequency discharge characteristics of short air gap in water mist condition[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1734-1742. [27] 国家电网公司. DL/T 1178—2012 1000kV交流输电线路金具电晕及无线电干扰试验方法[S]. 北京: 中国电力出版社, 2012. [28] 国家能源局. DL/T 1727—2017 110kV~750kV交流架空输电线路可听噪声控制技术导则[S]. 2017. [29] 毛艳, 邓桃, 魏杰, 等. ±1100kV线路金具电场仿真与电晕特性[J]. 高电压术, 2019, 45(4): 1137-1145. Mao Yan, Deng Tao, Wei Jie, et al.Electric field characteristic and corona performance of ±1100kV power fittings for transmission lines[J]. High Voltage Engineering, 2019, 45(4): 1137-1145. [30] 刘鹏, 吴泽华, 程建伟, 等. 特高压多端柔直换流站直流场均压屏蔽金具电场分布仿真分析与差异化优化方法[J]. 电网技术, 2021, 45(6): 2405-2412. Liu Peng, Wu Zehua, Cheng Jianwei, et al.Simulation analysis and differentiated optimization methods of electric field distribution for shielding devices in UHV multi-terminal flexible DC converter station[J]. Power System Technology, 2021, 45(6): 2405-2412.