Simulation and Experimental Study on Corona Characteristics of Large Size Typical Electrodes Used in UHV Converter Station
Liu Peng1, Guo Yiyu1, Wu Zehua1, Zhang Wei2, Xie Liang3
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China; 2. Pinggao Group Co. Ltd Pingdingshan 467000 China; 3. State Key Laboratory of Power Grid Environmental Protection China Electric Power Research Institute Wuhan 430074 China
Abstract:To ensure the reliable design of the shielding device in UHV converter stations, a three-dimensional method to analyze corona onset characteristic of large size shielding devices was proposed in the paper. The corona test is carried out with large size sphere and ring electrodes, and the test results show that the method this paper proposed can effectively predict the corona onset E-field strength on the surface of large-size typical electrodes in UHV converter stations, and the relative error between the prediction value and the experimental value is between -2.6% and 3.4%. The empirical formula for equivalent radius of grading ring is analyzed and verified, which the scope of the formula about pipe diameter and ring diameter is determined. The research can provide basis for the prediction of the corona onset electric strength of the large size electrodes and the design of the shielding devices.
刘鹏, 郭伊宇, 吴泽华, 张炜, 谢梁. 特高压换流站大尺寸典型电极起晕特性的仿真与试验[J]. 电工技术学报, 2022, 37(13): 3431-3440.
Liu Peng, Guo Yiyu, Wu Zehua, Zhang Wei, Xie Liang. Simulation and Experimental Study on Corona Characteristics of Large Size Typical Electrodes Used in UHV Converter Station. Transactions of China Electrotechnical Society, 2022, 37(13): 3431-3440.
[1] 舒印彪, 张文亮. 特高压输电若干关键技术研究[J]. 中国电机工程学报, 2007, 27(31): 1-6. Shu Yinbiao, Zhang Wenliang.Research of key technologies for UHV transmission[J]. Proceedings of the CSEE, 2007, 27(31): 1-6. [2] Huang Daochun, Shu Yinbiao, Ruan Jiangjun, et al.Ultra high voltage transmission in China: developments, current status and future prospects[J]. Proceedings of the IEEE, 2009, 97(3): 555-583. [3] 陈东, 乐波, 郭贤珊, 等. ±1100 kV特高压换流站支柱绝缘子屏蔽球参数优化设计[J]. 高电压技术, 2017, 43(10): 3189-3197. Chen Dong, Yue Bo, Guo Xianshan, et al.Optimal design of shielding ball parameters for post insulator of ±1 100kV UHV converter station[J]. High Voltage Engineering, 2017, 43(10): 3189-3197. [4] 王加龙, 彭宗仁, 刘鹏, 等. ±1100kV特高压换流站阀厅均压屏蔽金具表面电场分析[J]. 高电压技术, 2015, 41(11): 3728-3736. Wang Jialong, Peng Zongren, Liu Peng, et al.Analysis of electric field on the surface of grading and shielding fittings inside ±1 100kV ultra-high voltage converter valve hall[J]. High Voltage Engineering, 2015, 41(11): 3728-3736. [5] 阮江军, 詹婷, 杜志叶, 等. ±800kV特高压直流换流站阀厅金具表面电场计算[J]. 高电压技术, 2013, 39(12): 2916-2923. Ruan Jiangjun, Zhan Ting, Du Zhiye, et al.Numerical solution of surface electric field in ±800kV UHVDC converter station valve hall of electric power fittings[J]. High Voltage Engineering, 2013, 39(12): 2916-2923. [6] 刘泽洪, 丁永福, 王祖力, 等. 特高压阀厅金具表面电场计算及起晕校核[J]. 中国电力, 2014, 47(10): 19-23, 46. Liu Zehong, Ding Yongfu, Wang Zuli, et al.Calculation of the surface electric field and checking of the corona onset field intensity on the fittings inside UHVDC valve hall[J]. Electric Power, 2014, 47(10): 19-23, 46. [7] 方雅琪, 王力农, 李瑞, 等. 高海拔带电作业间隙操作冲击放电特性及放电电压校正[J]. 电工技术学报, 2020, 35(12): 2681-2688. Fang Yaqi, Wang Linong, Li Rui, et al.Switching impulse flashover characteristics of live working air gaps in high altitude areas and discharge voltage correction[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2681-2688. [8] 杨亚奇, 李卫国, 夏喻, 等. 低气压下长间隙交直流放电特性研究[J]. 电工技术学报, 2018, 33(5): 1143-1150. Yang Yaqi, Li Weiguo, Xia Yu, et al.Research of AC and DC discharge characteristics of long gap under low pressure[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1143-1150. [9] 陈宝辉, 邓捷, 孙易成, 等. 电场均匀性对细水雾短空气间隙工频放电特性的影响[J]. 电工技术学报, 2021, 36(8): 1734-1742. Chen Baohui, Deng Jie, Sun Yicheng, et al.Influence of electric field uniformity on power frequency discharge characteristics of short air gap in water mist condition[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1734-1742. [10] 刘晓鹏, 赵贤根, 刘磊, 等. 长空气间隙放电通道的绝缘恢复特性[J]. 电工技术学报, 2021, 36(2): 380-387. Liu Xiaopeng, Zhao Xiangen, Liu Lei, et al.Characteristics of the discharge channel during the relaxation process in the long air gap[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 380-387. [11] 邱志斌, 阮江军, 唐烈峥, 等. 空气间隙的储能特征与放电电压预测[J]. 电工技术学报, 2018, 33(1): 185-194. Qiu Zhibin, Ruan Jiangjun, Tang Liezheng, et al.Energy storage features and discharge voltage prediction of air gaps[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 185-194. [12] 李锰. 基于FEM-FCT法的SF6/N2混合气体流注电晕的仿真研究[D]. 长沙: 湖南大学, 2011. [13] 殷之文. 电介质物理学[M]. 2版. 北京: 科学出版社, 2003. [14] Soria-Hoyo C, Pontiga F, Castellanos A.Particle-in-cell simulation of Trichel pulses in pure oxygen[J]. Journal of Physics D: Applied Physics, 2007, 40(15): 4552-4560. [15] Gupta D K, Mahajan S, John P I.Theory of step on leading edge of negative corona current pulse[J]. Journal of Physics D: Applied Physics, 2000, 33(6): 681-691. [16] Lu Binxian, Feng Qikun, Sun Hongyu.The effect of environmental temperature on negative corona discharge under the action of photoionization[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 149-154. [17] Peek F W.Dielectric phenomena in high-voltage engineering[M]. 3rd ed. New York: Wiely, 1929. [18] 范建斌, 李中新, 谷琛, 等. 直流电压下导线起晕电压计算方法[J]. 电工技术学报, 2008, 23(10): 100-105. Fan Jianbin, Li Zhongxin, Gu Chen, et al.Calculation method for DC onset corona voltage[J]. Transactions of China Electrotechnical Society, 2008, 23(10): 100-105. [19] Lowke J J, D'Alessandro F. Onset corona fields and electrical breakdown criteria[J]. Journal of Physics D: Applied Physics, 2003, 36(21): 2673-2682. [20] Chvyreva A, Pancheshnyi S, Christen T, et al.Raether-Meek criterion for prediction of electrodeless discharge inception on a dielectric surface in different gases[J]. Journal of Physics D: Applied Physics, 2018, 51(11): 115202. [21] 郑跃胜, 何金良, 张波. 正极性电晕在空气中的起始判据[J]. 高电压技术, 2011, 37(3): 752-757. Zheng Yuesheng, He Jinliang, Zhang Bo.Onset criterion for positive corona in air[J]. High Voltage Engineering, 2011, 37(3): 752-757. [22] 白江, 阮江军, 杜志叶, 等. 负直流电压下棒板间隙起晕电压计算方法[J]. 中国电机工程学报, 2016, 36(8): 2305-2312. Bai Jiang, Ruan Jiangjun, Du Zhiye, et al.Calculation method for negative DC onset corona voltage in rod-plane gaps[J]. Proceedings of the CSEE, 2016, 36(8): 2305-2312. [23] 邱志斌, 阮江军, 黄道春, 等. 直流导线和阀厅金具的电晕起始电压预测[J]. 电工技术学报, 2016, 31(12): 80-89. Qiu Zhibin, Ruan Jiangjun, Huang Daochun, et al.Prediction on corona onset voltage of DC conductors and valve hall fittings[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 80-89. [24] 汪沨, 李锰, 潘雄峰, 等. 基于FEM-FCT算法的SF6/N2混合气体中棒-板间隙电晕放电特性的仿真研究[J]. 电工技术学报, 2013, 28(9): 261-267. Wang Feng, Li Meng, Pan Xiongfeng, et al.Corona discharge simulations of rod-plate gap in SF6/N2 gas mixtures using FEM-FCT method[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 261-267. [25] Lu Tiebing, Xiong Gaolin, Cui Xiang, et al.Analysis of corona onset electric field considering the effect of space charges[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1390-1393. [26] Raizer Y P, Braun C.Gas discharge physics[J]. Applied Optics, 1991, 31: 2400-2401. [27] Warne L, Jorgenson R, Nicolaysen S.Ionization coefficient approach to modeling breakdown in nonuniform geometries[R]. Office of Scientific and Technical Information (OSTI), 2003. [28] 刘鹏, 吴泽华, 程建伟, 等. 特高压多端柔直换流站直流场均压屏蔽金具电场分布仿真分析与差异化优化方法[J]. 电网技术, 2021, 45(6): 2405-2412. Liu Peng, Wu Zehua, Cheng Jianwei, et al.Simulation analysis and differentiated optimization methods of electric field distribution for shielding devices in UHV multi-terminal flexible DC converter station[J]. Power System Technology, 2021, 45(6): 2405-2412. [29] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电力金具试验方法第2部分:电晕和无线电干扰试验: GB/T 2317.2—2008[S]. 北京: 中国标准出版社, 2009.