Hybrid Self-Switching Resonant Wireless Charging System Based on LCL-LCL/S
Guo Xing1, Liu Liqiang1, Qi Yongsheng1, Gao Xuejin2, Li Yongting1
1. College of Electric Power Inner Mongolia University of Technology Hohhot 010080 China; 2. Department of Information School of Automation Beijing University of Technology Beijing 100124 China
Abstract:This paper aims to reduce the number of switching devices and passive components in a hybrid topology charging system, improve the output power of the system, and simplify the control strategy of the primary and secondary sides. A hybrid self-switching resonant wireless charging system based on LCL-LCL/S is proposed, which does not need primary and secondary side communication or any passive components. The constant current and constant voltage switching of the wireless charging system is realized only by changing the network topology through the automatic switching operation of the LCL structure. Firstly, a relationship between constant current or constant voltage output and input impedance was analyzed by a T-type network. Then, a mathematical model of the hybrid compensation network was introduced to analyze the parameter configuration conditions for realizing the zero-phase angle (ZPA) between the input current and voltage of the system and the constant current or constant voltage output characteristics. Next, according to the characteristics of the battery charging curve, resonant current threshold, voltage jump threshold, and coupling coefficient change constraints, a design method suitable for hybrid resonant topology network parameter optimization was proposed. This solution not only avoids the problem of parameter uncertainty caused by the limitation of empirical selection of resonant network parameters, but also provides a theoretical basis for parameter selection. Finally, an experimental platform was built to verify the feasibility and effectiveness of the solution. The experimental results show that the wireless charging system with optimized resonant network parameters possesses good constant current and constant voltage output characteristics. The maximum transmission efficiency of the system is 81%, which fully meets the requirements of constant current and constant voltage wireless charging.
[1] 薛明, 杨庆新, 章鹏程,等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [2] 贾金亮, 闫晓强. 磁耦合谐振式无线电能传输特性研究动态[J]. 电工技术学报, 2020, 35(20): 4217-4231. Jia Jinliang, Yan Xiaoqiang.Research tends of magnetic coupling resonant wireless power transfer characteristics[J]. Transactions of China Electro- technical Society, 2020, 35(20): 4217-4231. [3] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electro- magnetic compatibility of wireless power trans- mission system[J]. Transactions of China Electro- technical Society, 2020, 35(13): 2855-2869. [4] Wang Junhua, Hu Meilin, Cai Changsong.Optimi- zation design of wireless charging system for autonomous robots based on magnetic resonance coupling[J]. AIP Advances, 2018, 8(5): 2158-3226. [5] 谭平安, 廖佳威, 谭廷玉, 等. 基于发射侧T/F变结构补偿网络的恒压/恒流无线充电系统[J]. 电工技术学报, 2021, 36(2): 248-257. Tan Ping’an, Liao Jiawei, Tan Tingyu, et al.Constant voltage/constant current wireless charging system based on T/F variable structure compensation network of transmitter-side[J]. Transactions of China Electro- technical Society, 2021, 36(2): 248-257. [6] 麦瑞坤, 陈阳, 张友源, 等. 基于变次级补偿参数的感应式无线充电系统研究[J]. 中国电机工程学报, 2017, 37(11): 3263-3269. Mai Ruikun, Chen Yang, Zhang Youyuan, et al.Study on secondary compensation capacitor alteration based IPT charging system[J]. Proceedings of the CSEE, 2017, 37(11): 3263-3269. [7] Li Hongchang, Li Jie, Wang Kangping, et al.A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3998-4008. [8] 孙跃, 陈宇, 唐春森, 等. 感应电能传输系统输出电压调压电路研究[J]. 电工技术学报, 2015, 30(增刊1): 226-230. Sun Yue, Chen Yu, Tang Chunsen, et al.A voltage regulating circuit for secondary of inductive power transfer systems[J]. Transactions of China Electro- technical Society, 2015, 30(S1): 226-230. [9] 蒋勇斌, 王跃, 刘军文, 等. 基于跳频控制策略的串联-串联谐振无线电能传输系统的参数优化设计方法[J]. 电工技术学报, 2017, 32(16): 163-174. Jiang Yongbin, Wang Yue, Liu Junwen, et al.The optimal design methodology of series-series resonant tank parameters of wireless power transmission system based on leap frequency control strategy[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 163-174. [10] Ahn D, Hong S.A study on magnetic field repeater in wireless power transfer[J]. IEEE Transactionson Industrial Electronics, 2013, 60(1): 360-371. [11] 浦润琴, 唐忠, 王晓毅. 恒压恒流型无线充电系统负载识别特性研究[J]. 电气传动, 2020, 50(9): 122-128. Pu Runqin, Tang Zhong, Wang Xiaoyi.Research on load identification characteristics of constant voltage constant current wireless charging system[J]. Electric Drive, 2020, 50(9): 122-128. [12] 麦瑞坤, 张友源, 陈阳, 等. 可配置充电电流的变结构无线充电系统研究[J]. 中国电机工程学报, 2018, 38(11): 3335-3343. Mai Ruikun, Zhang Youyuan, Chen Yang, et al.Study on IPT charging systems with hybrid topology for configurable charge currents[J]. Proceedings of the CSEE, 2018, 38(11): 3335-3343. [13] Chen Yafei, Zhang Hailong, Park S J, et al.A switching hybrid LCC-S compensation topology for constant current/voltage EV wireless charging[J]. IEEE Access, 2019, 7: 133924-133935. [14] Chen Yang, Kou Zhihao, Zhang Youyuan, et al.Hybrid topology with configurable charge current and charge voltage output-based WPT charger for massive electric bicycles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(3): 1581-1593. [15] Mai Ruikun, Chen Yang, Li Yong, et al.Inductive powertransfer for massive electric bicycles charging based on hybrid topology switching with a single inverter[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 5897-5906. [16] 麦瑞坤, 陈阳, 刘野然. 基于变补偿参数的IPT恒流恒压电池充电研究[J]. 中国电机工程学报, 2016, 36(21): 5816-5821. Mai Ruikun, Chen Yang, Liu Yeran.Compensation capacitor alteration based IPT battery charging application with constant current and constant voltage control[J]. Proceedings of the CSEE, 2016, 36(21): 5816-5821. [17] 吴丽君, 李冠西, 张朱浩伯. 一种具有恒流恒压输出自切换特性的电动汽车无线电能传输系统拓扑[J]. 电工技术学报, 2020, 35(18): 3781-3790. Wu Lijun, Li Guanxi, Zhang Zhuhaobo.A wireless power transfer system topology with automatic switching characteristics of constant current and con- stant voltage output for electric vehicle charging[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3781-3790. [18] 薄强, 王丽芳, 张玉旺, 等. 应用于无线充电系统的SiC MOSFET关断特性分析[J]. 电力系统自动化, 2021, 45(15): 150-157. Bo Qiang, Wang Lifang, Zhang Yuwang, et al.Analysis of turn off characteristics of SiC MOSFET applied to wireless charging system[J]. Transactions of Power System Automation, 2021, 45(15): 150-157. [19] 陈飞彬, 麦瑞坤, 李勇. 基于调频控制的三线圈结构无线电能传输系统效率优化研究[J]. 电工技术学报, 2018, 33(增刊2): 313-320. Chen Feibin, Mai Ruikun, Li Yong.Efficiency optimization of three-coil structure wireless power transfer system based on frequency-varied control[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 313-320. [20] Liu Suqi, Tan Jianping.Using uniform magnetic field to obtain the constant output power and transfer efficiency for MCR-WPT[J]. Circuit World, 2019, 46(1): 42-47. [21] Chen Yafei, Zhang Hailong, Park Sung-Jun.A comparative study of S-S and LCCL-S compensation topologies in inductive power transfer systems for electric vehicles[J]. Energies, 2019, 12(10): 1913-1931. [22] Zhao Jingying, Zhang Zhenyuan, Xing Yongqi.Design and implementation of double-sided LCL variable compensation topology of MCR-WPT system[J]. IEEJ Transactions on Electrical and Elec- tronic Engineering, 2020, 12(15): 1853-1862.