Compensation Control of Zero Current Detection Delay and Interleave Phase Error for CRM Totem-Pole Power Factor Correction in Portable Charging
Wang Shengdong1, Li Haoran2, Gu Zhanbiao3, Zhang Zhiliang1, Ren Xiaoyong1
1. College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106 China; 2. School of Electrical Engineering and Automation Anhui University Hefei 230039 China; 3. The 13th Research Institute of CETC Shijiazhuang 050051 China
Abstract:Totem-pole power factor correction (PFC) is widely used in EV chargers to improve the charging efficiency. A full-range ZVS control model considering ZVS margin and light load frequency limitation is proposed in this paper, full ZVS operation is realized within full voltage range. The impact of zero-current-detection (ZCD) delay on the total harmonic distortion (THD) of input current is analyzed, and a ZCD delay compensation method based on the on-line time calculation model is proposed, the full load THD is reduced by 1.4%. For the phase error of two-phase interleaving, a phase error compensation method considering the change of switching period is proposed, which improves the interleaving accuracy and the full load THD is further reduced by 0.5%. Finally, a prototype of 3-kW portable charger is built to verify the effectiveness of the proposed control strategy. The maximum efficiency of the totem-pole PFC stage is 98.8%, and the maximum charging efficiency is 96.6%. The full load THD is 2.4%, which is 1.9% lower than that before compensation.
王生东, 李浩然, 顾占彪, 张之梁, 任小永. 便携式充电CRM图腾柱功率因数校正过零检测延迟与交错相位误差补偿控制[J]. 电工技术学报, 2022, 37(1): 12-23.
Wang Shengdong, Li Haoran, Gu Zhanbiao, Zhang Zhiliang, Ren Xiaoyong. Compensation Control of Zero Current Detection Delay and Interleave Phase Error for CRM Totem-Pole Power Factor Correction in Portable Charging. Transactions of China Electrotechnical Society, 2022, 37(1): 12-23.
[1] 银泽一, 王广柱, 程振兴.基于模块化多电平变换器的插电式混合电动汽车系统充电控制策略[J]. 电工技术学报, 2020, 35(6): 1316-1326. Yin Zeyi, Wang Guangzhu, Chen Zhenxing.Charge control strategy of plug-in hybrid electric vehicle system based on modular multilevel converter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1316-1326. [2] Khaligh A, D’Antonio M.Global trends in high-power on-board chargers for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3306-3324. [3] 张献, 白雪宁, 沙琳, 等. 电动汽车无线充电系统不同结构线圈间互操作性评价方法研究[J]. 电工技术学报, 2020, 35(19): 4150-4160. Zhang Xian, Bai Xuening, Sha Ling, et al. Research on interoperability evaluation method of different coils in wireless charging system of electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4150-4160. [4] Li Haoran, Wang Shengdong, Zhang Zhiliang, et al. Bidirectional synchronous rectification on-line calculation control for high voltage applications in SiC bidirectional LLC portable chargers[J]. IEEE Transactions on Power Electronics, 2021, 36(5): 5557-5568. [5] Li Haoran, Zhang zhiliang, Wang Shengdong, et al. A 300kHz 6.6kW SiC bidirectional LLC Onboard charger[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1435-1445. [6] Marxgut C, Krismer F, Brotis D, et al. Ultraflat interleaved triangular current mode (TCM) single-phase PFC rectifier[J]. IEEE Transactions on Power Electronics, 2014, 29(2): 873-882. [7] Liu zhengyang, Li Bin, Lee F C, et al. High-efficiency high-density critical mode rectifier/inverter for WBG-device-based on-board charger[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 9114-9123. [8] Liu Zhengyang, Huang Zhengrong, Lee F C, et al. digital-based interleaving control for GaN-based MHz CRM totem-pole PFC[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 808-814. [9] Huang Qingyuan, Yu Ruiyang, Ma Qingxuan, et al. Predictive ZVS control with improved ZVS time margin and limited variable frequency range for a 99% efficient, 130-W/in3 MHz GaN totem-pole PFC rectifier[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 7079-7091. [10] Yin Hao, Lang Tianchen, Li Xiang, et al. A hybrid boundary conduction modulation for a single-phase H-bridge inverter to alleviate zero-crossing distortion and enable reactive power capability[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8311-8323. [11] Fan Boran, Wang Qiong, Burgus Rolando, et al. Adaptive hysteresis current based ZVS modulation and voltage gain compensation for high-frequency three-phase converters[J]. IEEE Transactions on Power Electronics, 2021, 36(1): 1143-1156. [12] 周玉婷, 吴羽, 任小永, 等. 基于改进恒导通时间控制的临界连续导通模式Boost功率因数校正变换器[J]. 电工技术学报, 2021, 36(20): 4329-4338. Zhou Yuting, Wu Yu, Ren Xiaoyong, et al. Improved constant on-time control of boundary conduction mode Boost power factor correction converter[J]. Transactions of China Electrotechnical Society, 2021, 36(20): 4329-4338. [13] Sun Jingjing, Huang Xingxuan, Strain N N, et al. Inductor design and ZVS control for a GaN-based high efficiency CRM totem-pole PFC converter[C]//2019 IEEE Applied Power Electronics Conference and Exposition(APEC), Anaheim, 2019: 727-733. [14] Ren Xiaoyong, Wu Yu, Guo Zhehui, et al. An online monitoring method of circuit parameters for variable on-time control in CRM Boost PFC converters[J]. IEEE Transactions on Power Electronics, 2019, 34(2): 1786-1797. [15] 曹勇, 杨飞, 李春辉, 等. 不同耦合系数下的交错并联电流连续模式Boost功率因数校正变换器的传导电磁干扰[J]. 电工技术学报, 2019, 34(10): 2176-2186. Cao Yong, Yang Fei, Li Chunhui, et al. Conducted electromagnetic interference of interleaved continuous current mode Boost power factor correction converter with different coupling coefficients[J]. Transactions of China Electrotechnical Society, 2019, 34(10): 2176-2186. [16] 王议锋, 崔玉璐, 马小勇, 等. 一种交错并联双Buck全桥型双向并网逆变器[J]. 电工技术学报, 2019, 34(21): 4529-4539. Wang Yifeng, Cui Yulu, Ma Xiaoyong, et al. An interleaved dual-Buck full-bridge type bidirectional grid-connected inverter[J]. Transactions of China Electrotechnical Society, 2019, 34(21): 4529-4539.