Application Status and Key Issues of Wireless Power Transmission Technology
Xue Ming1,2, Yang Qingxin1, Zhang Pengcheng1, Guo Jianwu2, Li Yang2, Zhang Xian2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Tianjin Polytechnic University Tianjin 300387 China
Abstract:Since the MIT research team published its research results on wireless power transmission technology in 2007, extensive and in-depth studies on scientific issues and key technologies have been conducted at home and abroad. With the breakthrough of difficult problems, the fields radiated by wireless transmission as a new mode of power transmission are increasing. In this paper, the classification and composition of wireless power transmission technology are introduced briefly. Secondly, focusing on the application in eight major fields, including household electronic equipment, smart home, medical device, industrial robot, internet of things, underwater acoustic equipment, transportation and aerospace for more than 10 years at home and abroad, the application level of this technology and the key problems existing in different fields are emphatically expounded. Thirdly, the research results of this technology at home and abroad are compared and analyzed from the literature and patent. Finally, the paper summarizes the key common issues in the practical application in various fields and analyzes the current situation of the industrialization of wireless power transmission technology.
[1] Tesla N.Apparatus for transmitting electrical energy: US 1119732[P]. 1914-10. [2] 范兴明, 高琳琳, 莫小勇, 等. 无线电能传输技术的研究现状与应用综述(英文)[J]. 电工技术学报, 2019, 34(7): 1353-1380. Fan Xingming, Gao Linlin, Mo Xiaoyong, et al.Over- view of research status and application of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2019, 34(7): 1353-1380. [3] Trivino-Cabrera A, Sanchez J A A. A review on the fundamentals and practical implementation details of strongly coupled magnetic resonant technology for wireless power transfer[J]. Energies, 2018, 11(10): 2844. [4] Zhang Zhen, Pang Hongliang, Georgiadis A, et al.Wireless power transfer an overview[J]. IEEE Transactions on Industrial Electronics, 2018, 66(2): 1044-1058. [5] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84. Cheng Shijie, Chen Xiaoliang, Wang Junhua, et al.Key technologies and applications of wireless power transmission[J]. Transactions of China Electro- technical Society, 2015, 30(19): 68-84. [6] Sun Longzhao, Ma Dianguang, Tang Houjun.A review of recent trends in wireless power transfer technology and its applications in electric vehicle wireless charging[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 490-503. [7] Ahmad A, Alam M S, Chabaan R.A comprehensive review of wireless charging technologies for electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 38-63. [8] Jang Y J, Jeong S, Lee M S.Initial energy logistics cost analysis for stationary, quasi-dynamic, and dynamic wireless charging public transportation systems[J]. Energies, 2016, 9(7): 483. [9] 李文清. 感应式无线充电产品详述及设计[J]. 机电信息, 2019, 27: 124-125, 127. Li Wenqing.Detail and design of inductive wireless charging products[J]. Mechanical and Electrical Information, 2019, 27: 124-125, 127. [10] Astronics. Cord-free charging for your aircraft cabin[EB/OL].[2019-11-23]. https://www.astronics.com/ advanced-electronic-systems/aircraft-wireless-charging. [11] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18): 3-17. Zhang Bo, Shu Xujian, Huang Runhong.The deve- lopment of inductive and resonant wireless power transfer technology[J]. Transactions of China Electro- technical Society, 2017, 32(18): 3-17. [12] 孙跃, 王智慧, 戴欣, 等. 非接触电能传输系统的频率稳定性研究[J]. 电工技术学报, 2005, 20(11): 56-59. Sun Yue, Wang Zhihui, Dai Xin, et al.Study of frequency stability of contactless power transmission system[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 56-59. [13] 戴欣, 孙跃, 苏玉刚, 等. 感应电能传输系统参数辨识与恒流控制[J]. 重庆大学学报, 2011, 34(6): 98-104. Dai Xin, Sun Yue, Su Yugang, et al.Study on constant current control of inductive power transfer with parameter identification[J]. Journal of Chongqing University, 2011, 34(6): 98-104. [14] 张琼丹, 周继昆, 王黎光. 基于移相控制的电压型IPT系统恒压输出研究[J]. 电力电子技术, 2017, 51(9): 99-102. Zhang Qiongdan, Zhou Jikun, Wang Liguang.Research on constant voltage output of voltage-fed IPT system based on phase-shifted control[J]. Power Electronics, 2017, 51(9): 99-102. [15] 王琦婷, 魏业文, 周健飞, 等. 感应耦合电能传输系统最佳工作点跟踪研究[J]. 工矿自动化, 2019, 45(12): 54-59. Wang Qiting, Wei Yewen, Zhou Jianfei, et al.Research on optimal operating point tracking of inductive coupled power transmission system[J]. Industry and Mine Automation, 2019, 45(12): 54-59. [16] 盛学锐, 史黎明, 殷正刚. 感应耦合电能传输系统的移相与脉冲密度混合电压调控策略[J]. 电力系统自动化, 2018, 42(24): 120-129. Sheng Xuerui, Shi Liming, Yin Zhenggang.Hybrid strategy of voltage regulation combined phase-shift and pulse density modulation methods for inductively coupled power transfer system[J]. Automation of Electric Power Systems, 2018, 42(24): 120-129. [17] 师兵范, 望俊成, 史晓枫, 等. 海尔公司无线充电领域专利分析[J]. 高技术通讯, 2018, 28(3): 269-277. Shi Bingfan, Wang Juncheng, Shi Xiaofeng.Analysis of Haier's patents in the wireless charging field[J]. Chinese High Technology Letters, 2018, 28(3): 269-277. [18] Chow J P W, Chen Nan, Chung H S H, et al. Misalignment tolerable coil structure for biomedical applications with wireless power transfer[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 2013: 775-778. [19] Basar M R, Ahmad M Y, Cho J, et al.A wireless power transmission system for robotic capsule endoscopy: design and optimization[C]//IEEE MTTS International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Health- care Applications (IMWS-Bio2014), London, UK, 2014: 1-3. [20] Gore V B, Gawali D H.Wireless power transfer technology for medical applications[C]//2016 Confer- ence on Advances in Signal Processing (CASP), Pune, India, 2016: 455-460. [21] Zhu Guijie, Mai Songping, Zhang Chun, et al.Distance and load insensitive inductive powering for implantable medical devices through wireless com- munication[C]//IEEE Wireless Power Transfer Con- ference (WPTC), Taipei, China, 2017: 1-3. [22] 人体内植极微小电子医疗设备无线充电新方法[J]. 机械, 2014, 41(9): 58. A new wireless charging method for implanting extremely small electronic medical devices in human body[J]. Machinery, 2014, 41(9): 58. [23] 陈庆彬, 叶逢春, 陈为. 无线电能传输系统补偿拓扑综述[J]. 电气开关, 2017, 55(5): 1-4, 9. Chen Qingbin, Ye Fengchun, Chen Wei.Review of compensation network in wireless power transfer system[J]. Electric Switchgear, 2017, 55(5): 1-4, 9. [24] 刘闯, 郭赢, 葛树昆, 等. 具备恒压特性的SP/S感应式无线电能传输系统[J]. 电工技术学报, 2016, 31(13): 149-154. Liu Chuang, Guo Ying, Ge Shukun, et al.The SP/S inductive power transfer system with constant voltage characteristics[J]. Transactions of China Electro- technical Society, 2016, 31(13): 149-154. [25] 胡宏晟, 蔡涛, 段善旭, 等. 用于WPT系统一次侧失谐SS型补偿拓扑及其参数设计方法[J]. 电工技术学报, 2017, 32(18): 73-82. Hu Hongsheng, Cai Tao, Duan Shanxu, et al.Study of the primary side detuned series-series compensated topology and parameter design for WPT system[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 73-82. [26] Li Weihan, Zhao Han, Li Siqi, et al.Integrated compensation topology for wireless charger in electric and plug-in electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4215-4225. [27] 吉莉, 王丽芳, 廖承林, 等. 基于LCL谐振补偿网络的副边自动切换充电模式无线电能传输系统研究与设计[J]. 电工技术学报, 2018, 33(增刊1): 34-40. Ji Li, Wang Lifang, Liao Chenglin, et al.Research and design of automatic alteration between constant current mode and constant voltage mode at the secondary side based on LCL compensation network in wireless power transfer systems[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 34-40. [28] 陈凯楠, 赵争鸣, 刘方, 等. 电动汽车双向无线充电系统谐振拓扑分析[J]. 电力系统自动化, 2017, 41(2): 66-72. Chen Kainan, Zhao Zhengming, Liu Fang, et al.Analysis of resonant topology of bi-directional wire- less charging system of electric vehicles[J]. Auto- mation of Electric Power Systems, 2017, 41(2): 66-72. [29] Li Siqi, Li Weihan, Deng Junjun, et al.A double- sided LCC compensation network and its tuning method for wireless power transfer[J]. IEEE Transa- ctions on Vehicular Technology, 2015, 64(6): 2261-2273. [30] 王懿杰, 姚友素, 刘晓胜, 等. 无线电能传输用S/CLC补偿拓扑分析[J]. 电工技术学报, 2017, 32(22): 34-41. Wang Yijie, Yao Yousu, Liu Xiaosheng, et al.Analysis on S/CLC compensation topology for wire- less power transfer[J]. Transactions of China Electro- technical Society, 2017, 32(22): 34-41. [31] 郑广君. 适应需求侧管理的高效中距离磁共振式电动汽车无线充电线圈优化设计[J]. 电工技术学报, 2017, 32(增刊1): 209-216. Zheng Guangjun.Optimization design of efficient middle-distance magnetic-resonance wireless charge coil suitable for electric vehicle charging[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(S1): 209-216. [32] Shijo T, Ogawa K, Obayashi S.Optimization of thickness and shape of core block in resonator for 7kW-class wireless power transfer system for PHEV/ EV charging[C]//IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, Canada, 2015: 3099-3102. [33] Budhia M, Covic G A, Boys J T, et al.Development and evaluation of single sided flux couplers for contactless electric vehicle charging[J]. Energy Con- version Congress & Exposition, 2011, 47(10): 614-621. [34] Zaheer A, Hao Hao, Covic G A, et al.Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 1937-1955. [35] Choi S Y, Gu B W, Jeong S Y.Advances in wireless power transfer systems for roadway-powered electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 18-36. [36] Abdolkhani A, Hu A P.Improved autonomous current-fed push-pull resonant inverter[J]. IET Power Electronics, 2014, 7(8): 2103-2110. [37] 宋凯, 朱春波, 李阳, 等. 用于电动汽车动态供电的多初级绕组并联无线电能传输技术[J]. 中国电机工程学报, 2015, 35(17): 4445-4453. Song Kai, Zhu Chunbo, Li Yang, et al.Wireless power transfer technology for electric vehicle dynamic charging using multi-parallel primary coils[J]. Proceedings of the CSEE, 2015, 35(17): 4445-4453. [38] 赵锦波, 蔡涛, 段善旭, 等. 适用于分段式动态无线充电的接力方法[J]. 电力系统自动化, 2016, 40(16): 64-70. Zhao Jinbo, Cai Tao, Duan Shanxu, et al.Relay control method for sectional track based dynamic wireless charging system[J]. Automation of Electric Power Systems, 2016, 40(16): 64-70. [39] 蒋成, 孙跃, 王智慧, 等. 电动汽车无线供电导轨切换模式分析[J]. 电力系统自动化, 2017, 41(12): 188-193. Jiang Cheng, Sun Yue, Wang Zhihui, et al.Switching mode analysis of wireless supplying rail for electric vehicles[J]. Automation of Electric Power Systems, 2017, 41(12): 188-193. [40] 张献, 章鹏程, 杨庆新, 等. 基于有限元方法的电动汽车无线充电耦合机构的磁屏蔽设计与分析[J]. 电工技术学报, 2016, 31(1): 71-79. Zhang Xian, Zhang Pengcheng, Yang Qingxin, et al.Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method[J]. Transactions of China Electro- technical Society, 2016, 31(1): 71-79. [41] 陈琛. 谐振式无线电能传输系统的若干电磁问题研究及优化设计[D]. 南京: 东南大学, 2016. [42] Cai Changsong, Wang Junhua, Fang Zhijian, et al.Design and optimization of load-independent magnetic resonant wireless charging system for electric vehicles[J]. IEEE Access, 2018, 6: 17264-17274. [43] 朱庆伟, 陈德清, 王丽芳, 等. 汽车无线充电系统磁场仿真与屏蔽技术研究[J]. 电工技术学报, 2015, 30(增刊1): 143-147. Zhu Qingwei, Chen Deqing, Wang Lifang, et al.Study on the magnetic field and shielding technique for an electric vehicle oriented wireless charging system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 143-147. [44] Zhu Qingwei, Zhang Yun, Guo Yanjie.Null-coupled electromagnetic field canceling coil for wireless power transfer system[J]. IEEE Transactions on Transportation Electrification, 2017, 3(2): 464-473. [45] Moon H, Kim S, Park H.Design of a resonant reactive shield with double coils and a phase shifter for wireless charging of electric vehicles[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4. [46] Yashima Y, Omori H, Morizane T.Leakage magnetic field reduction from wireless power transfer system embedding new eddy current-based shielding method[C]// International Conference on Electrical Drives, Tatranska Lomnica, Slovakia, 2015: 241-245. [47] Jiang Jinhai, Zhu Chunbo, Song Kai, et al.Novel power receiver for dynamic wireless power transfer system[C]//Conference of the IEEE Industrial Elec- tronics Society, Yokohama, Japan, 2015: 2247-2251. [48] Kobayashi D, Imura T, Hori Y.Real-time coupling coefficient estimation and maximum efficiency control on dynamic wireless power transfer for electric vehicles[C]//Conference of the IEEE Indu- strial Electronics Society, Yokohama, Japan, 2015: 13-18. [49] Zhong W X, Hui S Y R. Maximum energy efficiency tracking for wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 4025-4034. [50] Miller J, Onar C, Chinthavali M.Primary-side power flow control of wireless power transfer for electric vehicle charging[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 147-162. [51] Kim J, Kim H, Kim M, et al.Analysis of EMF noise from the receiving coil topologies for wireless power transfer[C]//Asia-Pacific International Symposium on Electromagnetic Compatibility, New York, USA, 2012: 645-648. [52] 绿驰汽车. 绿驰汽车与有感科技就无线充电达成战略合作[EB/OL].[2019-11-23]. http://www.reechauto. com/news-43/. [53] 宗河. 汽车无线充电有多远[J]. 消费指南, 2018(9): 64-66. Zong He.How far is it to charge the car wirelessly?[J]. Consumer Report Magazine, 2018(9): 64-66. [54] TIM Dickson, Primove-wireless electrification[D]. Toronto: Ryerson Univ, 2013. [55] Budhia M, Boys J T, Covic G A, et al.Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328. [56] Fu Minfan, Tang Zefan, Liu Ming, et al.Full-bridge rectifier input reactance compensation in megahertz wireless power transfer systems[C]//IEEE PELS Workshop on Emerging Technologies: Wireless Power (WoW), Daejeon, South Korea, 2015: 1-5. [57] Shi Liming, Yin Zhenggang, Jiang Longbin, et al.Advances in inductively coupled power transfer technology for rail transit[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(4): 383-396. [58] 苑朝阳, 张献, 杨庆新, 等. 无线供电高铁列车非对称耦合机构[J]. 电工技术学报, 2017, 32(18): 18-25. Yuan Zhaoyang, Zhang Xian, Yang Qingxin, et al.Asymmetric coupling mechanism of wireless power transmission system for high-speed train[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(18): 18-25. [59] 张欣, 李连鹤, 杨庆新, 等. 高频信号采集传输方案在无线供电技术中的应用[J]. 电工技术学报, 2015, 30(增刊2): 31-36. Zhang Xin, Li Lianhe, Yang Qingxin, et al.Appli- cation of high frequency signal transmission scheme on wireless power supply technology[J]. Transactions of China Electrotechnical Society, 2015, 30(S2): 31-36. [60] Almuhannadi D, Abdulrazzak R F, Ahmed R, et al.Inductive power transfer for railway applications[C]// First Workshop on Smart Grid and Renewable Energy (SGRE), Doha, Qatar, 2015: 1-6. [61] Ukita K, Kashiwagi T, Sakamoto Y, et al.Evaluation of a non-contact power supply system with a figure- of-eight coil for railway vehicles[C]//IEEE PELS Workshop on Emerging Technologies: Wireless Power (WoW), Daejeon, South Korea, 2015: 1-6. [62] 宋凯, 朱春波, 李阳, 等. 基于磁耦合谐振的自主无线充电机器人系统设计[J]. 电工技术学报, 2014, 29(9): 38-43. Song Kai, Zhu Chunbo, Li Yang, et al.Design and implementation of an autonomous wireless charging robot system using magnetically coupled resonance[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 38-43. [63] Uthman B.Robot-assisted maintenance of wireless sensor networks using wireless energy transfer[J]. IEEE Sensors Journal, 2017, 17(14): 4661-4671. [64] 李华军. 移动机器人的非接触充电装置及策略[D]. 重庆: 重庆大学, 2010. [65] 侯俊楷. 基于ICPT的巡检机器人无线充电系统设计与实现[D]. 重庆: 重庆大学, 2016. [66] Liu Han, Huang Xueliang, Tan Linlin, et al.Dynamic wireless charging for inspection robots based on decentralized energy pickup structure[J]. IEEE Transactions on Industrial Informatics, 2018, 14(4): 1786-1797. [67] 孙川, 王春芳. 寻轨机器人用无线充电系统的研究[J]. 电源学报, 2018, 16(6): 137-142. Sun Chuan, Wang Chunfang.Research on wireless charging system for line follower robot[J]. Journal of Power Supply, 2018, 16(6): 137-142. [68] 吴枫. 物联网传感节点的无线供电技术研究[J]. 单片机与嵌入式系统应用, 2012, 12(3): 26-28, 36. Wu Feng.Research of wireless power transmission technology of sensor node of the internet of things[J]. Application of SCM and Embedded System, 2012, 12(3): 26-28, 36. [69] Woongsoo N, Junho P, Cheol L, et al.Energy- efficient mobile charging for wireless power transfer in internet of things networks[J]. IEEE Internet of Things Journal, 2017, 5(1), 79-92. [70] Li Lixin, Xu Yang, Zhang Zihe, et al.A prediction- based charging policy and interference mitigation approach in the wireless powered internet of things[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(2): 439-451. [71] Choi K W, Aziz A A, Setiawan D, et al.Distributed wireless power transfer system for internet of things devices[J]. IEEE Internet of Things Journal, 2018, 5(4): 2657-2671. [72] Steve. Wireless charging technology-another way to solve the internet of things connectivity problem[EB/OL]. [2019-12-12]. http://www.elecfans.com/d/681783.html. [73] Daisaburo Y, Hiroshi S, Yasuhisa I, et al.Power feeding and data-transmission system using magnetic coupling for an ocean observation mooring buoy[J]. IEEE Transactions on Magnetics, 2007, 430(6): 2663-2665 [74] 孙俊, 赵伟昌, 郭义, 等. 大功率水下无线供电装置设计[J]. 船海工程, 2018, 47(3): 102-106. Sun Jun, Zhao Weichang, Guo Yi, et al.Research on high-power underwater wireless power supply device[J]. Marine Engineering, 2018, 47(3): 102-106. [75] 富一博, 于沨. 水下设备的无线电能传输系统补偿电路分析[J]. 声学与电子工程, 2015(4): 42-45. Fu Yibo, Yu Feng.Underwater equipment can radio transmission system compensation circuit analysis[J]. Acoustics and Electronics Engineering, 2015(4): 42-45. [76] 汪海洋, 李德骏, 周杰, 等. 水下非接触电能传输耦合器优化设计[J]. 中国科技论文, 2012, 7(8): 622-626. Wang Haiyang, Li Dejun, Zhou Jie, et al.Optimi- zation of underwater contactless power transmission couplers[J]. China Sciencepaper, 2012, 7(8): 622-626. [77] 唐凡, 张克涵, 严卫生, 等. 水下自主航行器非接触式充电系统频率控制[J]. 舰船科学技术, 2013, 35(2): 43-46. Tang Fan, Zhang Kehan, Yan Weisheng, et al.Research on frequency control of contactless charging system of AUV[J]. Ship Science and Technology, 2013, 35(2): 43-46. [78] 吴旭升, 孙盼, 杨深钦, 等. 水下无线电能传输技术及应用研究综述[J]. 电工技术学报, 2019, 34(8): 1559-1568. Wu Xusheng, Sun Pan, Yang Shenqin, et al.Review on underwater wireless power transfer technology and its application[J]. Transactions of China Electro- technical Society, 2019, 34(8): 1559-1568. [79] 康乐, 胡欲立, 张克涵. 水下磁谐振式无线电能传输系统的分析与设计[J]. 西安交通大学学报, 2015, 49(10): 41-47, 53. Kang Le, Hu Yuli, Zhang Kehan.A analysis and design for underwater magnetic resonance-based wireless power transfer system[J]. Journal of Xi'an Jiaotong University, 2015, 49(10): 41-47, 53. [80] 周世鹏, 刘敬彪, 史剑光. 水下无线电能传输和信号接口系统设计和分析[J]. 杭州电子科技大学学报:自然科学版, 2018, 38(4): 6-10. Zhou Shipeng, Liu Jingbiao, Shi Jianguang.Under- water non-contact power transmission and signal interface system design and analysis[J]. Journal of Hangzhou Dianzi University: Natural Sciences, 2018, 38(4): 6-10. [81] 李永烽. 基于超声波的水下无线能量传输初探[J]. 电声技术, 2014, 38(12): 58-60. Li Yongfeng.Analysis of underwater wireless energy transmission based on ultrasonic[J]. Audio Engin- eering, 2014, 38(12): 58-60. [82] 高镇, 于广强, 刘宁. 基于E类放大器的电场耦合式水下无线电能传输系统设计[J]. 河海大学学报:自然科学版, 2019, 47(6): 560-567. Gao Zhen, Yu Guangqiang, Liu Ning.Design of electric-field coupled underwater wireless power transfer system based on class E amplifier[J]. Journal of Hohai University: Natural Sciences, 2019, 47(6): 560-567. [83] 高镇, 李雨朦, 景晴晴, 等. 电场耦合式水下无线电能传输系统的耦合机构[J]. 河海大学学报: 自然科学版, 2018, 46(4): 366-370. Gao Zhen, Li Yumeng, Jing Qingqing, et al.Study on the coupling structure of underwater wireless power transmission system via electric coupling[J]. Journal of Hohai University: Natural Sciences, 2018, 46(4): 366-370. [84] 陈聪, 周骏, 龚沈光. 海水中电磁波传播特性的研究[J]. 海军工程大学学报, 2004(2): 61-64. Chen Cong, Zhou Jun, Gong Shenguang.Propagation properties of electromagnetic wave in sea water[J]. Journal of Naval University of Engineering, 2004(2): 61-64. [85] 张克涵, 阎龙斌, 闫争超, 等. 基于磁共振的水下非接触式电能传输系统建模与损耗分析[J]. 物理学报, 2016, 65(4): 334-342. Zhang Kehan, Yan Longbin, Yan Zhengchao, et al.Modeling and analysis of eddy-current loss of under- water contact-less power transmission system based on magnetic coupled resonance[J]. Acta Physica Sinica, 2016, 65(4): 334-342. [86] 赵昕. 基于无线电能传输模式的无人机悬停无线充电技术研究[D]. 重庆: 重庆大学, 2015. [87] Campi T, Cruciani S, Maradei F, et al.Wireless charging system integrated in a small unmanned aerial vehicle (UAV) with high tolerance to planar coil misalignment[C]//2019 Joint International Sympo- sium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electro- magnetic Compatibility (EMC Sapporo/APEMC), Sapporo, Japan, 2019: 601-604. [88] 马秀娟, 武帅, 蔡春伟, 等. 应用于无人机的无线充电技术研究[J]. 电机与控制学报, 2019, 23(8): 1-9. Ma Xiujuan, Wu Shuai, Cai Chunwei, et al.Research on wireless charging technology applied to UAVs[J]. Electric Machines and Control, 2019, 23(8): 1-9. [89] Campi T, Crucciani S, Feliziani M, et al.Wireless power transfer technology applied to an autonomous electric UAV with a small secondary coil[J]. Energies, 2018, 11(2): 1-15. [90] Kim S W, Cho I K, Hong S Y.Design of transmitting coil for wireless charging system to expand charging area for drone applications[J]. Microwave and Optical Technology Letters, 2018, 60(5): 1179-1183. [91] Choi C H, Jang H J, Lim S G, et al.Automatic wireless drone charging station creating operation[C]// International Conference on Control, Automation and Information Sciences (ICCAIS), Ansan, South Korea, 2016: 132-136. [92] GET. GET reveals next generation of its in-flight wire- less charging solution for drones[EB/OL]. [2019-12-20]. http://getcorp.com/get-reveals-next-generation-of-its-in-flight-wireless-charging-solution-for-drones/. [93] 王业清, 杨雪霞, 江超. 整流天线组阵等效模型分析与实验[J]. 上海大学学报: 自然科学版, 2013, 19(3): 266-270, 285. Wang Yeqing, Yang Xuexia, Jiang Chao.Equivalent models and experiments of rectifier arrays[J]. Journal of Shanghai University: Natural Science Edition, 2013, 19(3): 266-270, 285. [94] 周华伟, 杨雪霞. 远距离微波输能系统波束捕获效率的优化[J]. 空间电子技术, 2015, 12(6): 14-17. Zhou Huawei, Yang Xuexia.Optimization of beam capture efficiency for long-distance microwave power transmission systems[J]. Space Electronics Techno- logy, 2015, 12(6): 14-17. [95] 魏嘉利, 贾云峰, 谢树果, 等. 航空电子系统电磁环境复杂度量化评估方法[J]. 航空学报, 2014, 35(2): 487-496. Wei Jiali, Jia Yunfeng, Xie Shuguo, et al.Complexity assessment method of electromagnetic environment for avionic systems[J]. Acta Aeronautica et Astro- nautica Sinica, 2014, 35(2): 487-496. [96] 冯钰. 空间太阳能电站[J]. 现代班组, 2019(4): 16. Feng Yu.Space solar power station[J]. Modern Group, 2019(4): 16. [97] 兰顺正. 美军计划建设空间太阳能发电站[N]. 中国国防报, 2019-11-26(4). [98] 申景诗, 程坤, 马波, 等. 激光无线能量传输在轨应用方法[J]. 航天器工程, 2015, 24(1): 25-30. Shen Jingshi, Cheng Kun, Ma Bo, et al.Application method of laser power transmission in orbit[J]. Spacecraft Engineering, 2015, 24(1): 25-30. [99] 吴政南, 谢江容, 杨雁南. 高功率半导体激光器光束整形的设计和实现[J]. 激光技术, 2017, 41(3): 416-420. Wu Zhengnan, Xie Jiangrong, Yang Yannan.Design and realization of high power semiconductor laser beam shaping[J]. Laser Technology, 2017, 41(3): 416-420. [100] 刘韵, 赵尚弘, 杨生胜, 等. 空间辐射下卫星光通信系统半导体激光器的可靠性估计[J]. 激光与光电子学进展, 2014, 51(5): 121-125. Liu Yun, Zhao Shanghong, Yang Shengsheng, et al.Reliability evaluation of space irradiated laser diode in laser satellite communication system[J]. Laser & Optoelectronics Progress, 2014, 51(5): 121-125. [101] Duncan K J.Laser based power transmission: component selection and laser hazard analysis[C]// IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), Knoxville, USA, 2016: 100-103. [102] 文海兵, 胡欲立, 张克涵, 等. 水下航行器非接触式充电电磁耦合器磁场分析[J]. 计算机测量与控制, 2013, 21(2): 458-476. Wen Haibing, Hu Yuli, Zhang Kehan, et al.Magnetic field analysis for electromagnetic coupler in con- tactless power transmission system for autonomous underwater vehicle[J]. Computer Measurement & Control, 2013, 21(2): 458-476. [103] Mayordomo I, Dräger T, Spies P, et al.An overview of technical challenges and advances of inductive wireless power transmission[J]. IEEE Transactions on Industrial Electronics, 2013, 101(6): 1302-1311. [104] Ahn D, Hong S.A transmitter or a receiver consisting of two strongly coupled resonators for enhanced resonant coupling in wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1193-1203. [105] 曲立楠. 磁耦合谐振式无线传输机理的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [106] 陈琛, 黄学良, 孙文慧, 等. 金属障碍物对磁耦合谐振无线电能传输系统的影响[J]. 电工技术学报, 2014, 29(9): 22-26. Chen Chen, Huang Xueliang, Sun Wenhui, et al.Impact of metal obstacles on wireless power trans- mission system based coupled resonance[J]. Transa- ctions of China Electrotechnical Society, 2014, 29(9): 22-26. [107] Kuyvenhoven N, Dean C, Melton J, et al.Deve- lopment of a foreign object detection and analysis method for wireless power systems[C]//IEEE Sympo- sium on Product Compliance Engineering (PSES), San Diego, USA, 2011: 1-6. [108] Sonapreetha M R, Jeong S Y, Choi S Y, et al.Dual- purpose non-overlapped coil sets as foreign object and vehicle location detections for wireless stationary EV chargers[C]//IEEE PELS Workshop on Wireless Power (WoW), Daejeon, South Korea, 2015: 1-7. [109] Jang G C, Jeong S Y, Kwak H G, et al.Metal object detection circuit with non-overlapped coils for wireless EV chargers[C]//IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, New Zealand, 2016: 1-6. [110] Kudo H, Ogawa K, Oodachi N, et al.Detection of a metal obstacle in wireless power transfer via magnetic resonance[C]//IEEE 33rd International Telecom- munications Energy Conference (INTELEC), Amsterdam, Netherlands, 2011: 1-6. [111] 郑辉. 多负载ICPT系统的频率稳定性研究[D]. 重庆: 重庆大学, 2012. [112] Huh J, Lee S W, Lee W Y, et al.Narrow-inductive power transfer system for on-line electrical vehicles[J]. IEEE Transactions on Power Electrons, 2011, 26(12): 3666-3679. [113] Boys J T, Chen C I, Covic G A.Controlling inrush currents in inductively coupled power systems[C]// International Power Engineering Conference, Singapore, 2005: 1046-1051. [114] Ahn D, Hong S.Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer[J]. IEEE Transactions on Industrial Electro- nics, 2013, 60(7): 2602-2613. [115] Dickinson R M.Safety issues in SPS wireless power transmission[J]. Space Policy, 2000, 16(2): 117-122. [116] Hirayama H, Amano T, Kikuma N, et al.A con- sideration of open-and short-end type helical antennas for magnetic-coupled resonant wireless power transfer[C]//European Conference on Antennas and Propagation, Prague, Czech Republic, 2012: 3009-3013. [117] Laakso I, Tsuchida S, Hirata A, et al.Evaluation of SAR in a human body model due to wireless power transmission in the 10MHz band[J]. Physics in Medicine and Biology, 2012, 57(15): 4991-5002. [118] Hirata A, Sunohara T, Laakso I, et al.SAR in a simplified human model due to wireless power transfer with induction coupling[C]//7th European Conference on Antennas and Propagation (Eu CAP), Gothenburg, Sweden, 2013: 1769-1772. [119] Sunohara T, Laakso I, Chan K H, et al.Compliance of induced quantities in human model for wireless power transfer system at 10MHz[C]//International Symposium on Electromagnetic Theory, Hiroshima, Japan, 2013: 831-833. [120] Hirata A, Ito F, Laakso I.Confirmation of quasi-static approximation in SAR evaluation for a wireless power transfer system[J]. Physics in Medicine and Biology, 2013, 58(17): N241-N249. [121] Laakso I, Hirata A.Evaluation of the induced electric field and compliance procedure for a wireless power transfer system in an electrical vehicle[J]. Physics in Medicine and Biology, 2013, 58(21): 7583-7593. [122] Hirata A, Tsuchida S, Laakso I.Variability of SAR in different human models due to wireless power transfer with magnetic resonance[C]//International Symposium on Electromagnetic Compatibility (EMC Europe), Brugge, Belgium, 2013: 89-92. [123] Christ A, Douglas M G, Roman J M, et al.Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(2): 265-274. [124] Chen Xilin, Umenei A E, Baarman D W.Human exposure to close-range resonant wireless power transfer systems as a function of design parameters[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(5): 1027-1034. [125] 杨庆新, 陈海燕, 徐桂芝, 等. 无接触电能传输技术的研究进展[J]. 电工技术学报, 2010, 25(7): 6-13. Yang Qingxin, Chen Haiyan, Xu Guizhi, et al.Research progress in contactless power transmission technology[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 6-13. [126] 赵争鸣, 张艺明, 陈凯楠. 磁耦合谐振式无线电能传输技术新进展[J]. 中国电机工程学报, 2013, 33(3): 1-13. Zhao Zhengming, Zhang Yiming, Chen Kainan.New progress of magnetically coupled resonant wireless power transfer technology[J]. Proceedings of the CSEE, 2013, 33(3): 1-13. [127] 我国移动终端无线充电标准启动[J]. 中国质量与标准导报, 2018(4): 11. China mobile terminal wireless charging standard start[J]. China Quality and Standards Review, 2018(4): 11. [128] 美国SAE发布新能源车无线充电指南[J]. 浙江电力, 2016(6): 77. SAE issued the wireless charging guide for new energy vehicles[J]. Zhejiang Electric Power, 2016(6): 77. [129] 刘云柱. 团体标准《移动终端无线充电装置》正式发布[J]. 安全与电磁兼容, 2019(1): 12. Liu Yunzhu.Group standard “mobile terminal wire- less charging device” released[J]. Safety & EMC, 2019(1): 12. [130] 智研咨询集团. 2017—2022年中国无线充电行业市场深度调研及投资前景分析报告[EB/OL].[2019-12-23]. http://www.chyxx.com/research/201611/463481.html.