Decoupling Calibration Method of 3D Electric Field Sensor Based on Differential Evolution Algorithm
Wu Guifang1, Cui Yong2, Liu Hong2, Zhang Lei3
1. China Electric Power Research Institute Beijing 100192 China; 2. School of Automatic Science and Electrical Engineering Beihang University Beijing 100191 China; 3. State Grid Shandong Electric Power Company Electric Power Research Institute Jinan 250003 China
Abstract:The information sensing of space electric field has important value in the sensing and measurement technology of power system. However, at present, there is no reliable measurement device of space DC electric field. The calibration method of space three-dimensional electric field sensor needs to be further studied. In this paper, a calibration model with inter-dimensional coupling and angular deviation is established under a three-dimensional adjustable external electric field. A method of solving the sensitivity coefficient matrix based on the differential evolution algorithm under this model is proposed. This method is more accurate and stable through the comparative study, and the error rate is less than 3% in multiple sets of simulation experiments (measurement error is not included). In addition, the variation of accuracy with the range of angle values is discussed, which can further improve the accuracy of the algorithm and the accuracy of calibration. The three-dimensional electric field sensor decoupling calibration method based on differential evolution algorithm can simplify the complexity and difficulty of calibration device design, and can also provide reference for other types of three-dimensional sensor calibration.
吴桂芳, 崔勇, 刘宏, 张磊. 基于差分进化算法的三维电场传感器解耦标定方法[J]. 电工技术学报, 2021, 36(19): 3993-4001.
Wu Guifang, Cui Yong, Liu Hong, Zhang Lei. Decoupling Calibration Method of 3D Electric Field Sensor Based on Differential Evolution Algorithm. Transactions of China Electrotechnical Society, 2021, 36(19): 3993-4001.
[1] Kobayashi T, Oyama S, Makimoto N, et al.An electrostatic field sensor operated by self-excited vibration of MEMS-based self-sensitive piezoelectric microcanti-levers[J]. Sensors and Actuators A: Physical, 2013, 198: 87-90. [2] 闻小龙, 彭春荣, 方东明, 等. 基于共面去耦结构的空间三维电场测量方法[J]. 电子与信息学报, 2014, 36(10): 2504-2508. Wen Xiaolong, Peng Chunrong, Fang Dongming, et al.Measuring method of three dimensional atmospheric electric field based on coplanar decoupling structure[J]. Journal of Electronics & Information Technology, 2014, 36(10): 2504-2508. [3] Bahreyni B, Wijeweera G, Shafai C, et al.Analysis and design of a micro machined electric-field sensor[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 31-36. [4] 李岩松, 高利, 刘君. 基于光学传感的交直流混合场一体化测量实现[J/OL].电测与仪表, 2020: 1-8[2020-07-24].http://kns.cnki.net/kcms/detail/23.1202.TH.20200514.1010.002.html. Li Yansong, Gao Li, Liu Jun. Integrated measurement of AC and DC mixed field based on optical sensing[J/OL]. Electrical Measurement & Instrumentation, 2020: 1-8[2020-07-24]. http://kns.cnki.net/kcms/detail/23.1202.TH.20200514.1010.002.html. [5] 吴昊, 齐波, 李成榕, 等. 基于Kerr效应法的油纸复合绝缘交直流复合电场测量[J]. 电工技术学报, 2013, 28(4): 28-34. Wu Hao, Qi Bo, Li Chengrong, et al.The measurement of AC-DC composite field for oil-paper insulation system based on the Kerr electro-optic effect[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 28-34. [6] 高春嘉, 齐波, 韩昊, 等. 大尺寸油纸绝缘结构多电压应力下空间电场特性[J]. 电工技术学报, 2019, 34(22): 4816-4826. Gao Chunjia, Qi Bo, Han Hao, et al.Space electric field characteristics in oil of large-scale oil-pressboard structure under various voltage stresses[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4816-4826. [7] Maruvada P S, Dallaire R D, Pedneault R. Development of field-mill instruments for ground-level and above-ground electric field measurement under HVDC transmission lines[J]. IEEE Power Engineering Review, 1983, PER-3: 42-43. [8] Gao Zhiye, Yu Zhanqing, Zeng Rong, et al.Research on measuring methods and sensors of high voltage DC electric field[C]//Information Science, Electronics and Electrical Engineering (ISEEE), 2014 International Conference, Sapporo, Japan, 2014: 850-854. [9] 赵录兴, 崔翔, 陆家榆, 等. 直流输电线路地面合成电场测量方法探讨[J]. 中国电机工程学报, 2018, 38(2): 644-652. Zhao Luxing, Cui Xiang, Lu Jiayu, et al.Discussion on measurement method of ground synthetic electric field of HVDC transmission line[J]. Proceedings of the CSEE, 2018, 38(2): 644-652. [10] Cui Yong, Yuan Haiwen, Song Xiao, et al.Model, design, and testing of field mill sensors for measuring electric fields under high-voltage direct-current power lines[J]. IEEE Transactions on Industrial Electronics, 2017, 65(1): 608-615. [11] 邹志龙, 崔翔, 卢铁兵. 空间电荷对旋转式直流电场仪测量准确性的影响[J]. 中国电机工程学报, 2015, 35(13): 3443-344. Zou Zhilong, Cui Xiang, Lu Tiebing.Influence of space charge on measurement accuracy of rotary DC electric field instrument[J]. Proceedings of the CSEE, 2015, 35(13): 3443-3449. [12] Cui Yong, Wang Qiusheng, Yuan Haiwen, et al.Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines[J]. Sensors, 2015, 15: 3540-3564. [13] IEC61786-1-2013 Measurement of DC magnetic, AC magnetic and AC electric fieldsfrom 1Hz to 100kHz with regard to exposure of human beings-part 1: requirements for measuring instruments (proposed horizontal Standards)[S]. 2013. [14] IEEEStd 1227TM—1990(R2010) IEEE guide for the measurement of DC electric-field strength and ion related quantities[S]. 2010. [15] 王淑敏, 陈晓宁, 张海涛, 等. 基于光纤传输的三维电磁场传感器设计与试验标定[J]. 装备制造技术, 2018(9): 1-7. Wang Shumin, Chen Xiaoning, Zhang Haitao, et al.Design and calibration experiments of 3D electromagnetic field sensor based on optical fiber transmission[J]. Equipment Manufacturing Technology, 2018(9): 1-7. [16] 贾晟, 石立华, 邱实, 等. 雷电快电场测量仪幅频特性的时域标定方法研究[J]. 传感技术学报, 2019, 32(12): 1864-1869. Jia Sheng, Shi Lihua, Qiu Shi, et al.Time-domain calibration method for amplitude-frequency characteristics of fast electric field measuring meter[J]. Chinese Journal of Sensors and Actuators, 2019, 32(12): 1864-1869 . [17] 郑凤杰, 白强, 张星, 等. 空中三维电场传感器及其标定方法研究[J]. 微纳电子技术, 2007, 44(7): 238-241. Zheng Fengjie, Bai Qiang, Zhang Xing, et al.Study of spatial 3D electric field sensor and its calibration method[J]. Micronanoelectronic Technology, 2007, 44(7): 238-241 . [18] 崔勇, 袁海文, 赵录兴, 等. 基于有限元方法的场磨式电场传感器标定装置优化设计[J]. 北京航空航天大学学报, 2015, 41(10): 1807-1812. Cui Yong, Yuan Haiwen, Zhao Luxing, et al.Optimum design of calibration device for field mill type electric field sensor based on finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics. 2015, 41(10): 1807-1812 . [19] Mach D M, Koshak W J.General matrix inversion technique for the calibration of electric field sensor arrays on aircraft platforms[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(9): 1576-1587. [20] 李冰, 彭春荣, 凌必赟, 等. 基于遗传算法的三维电场传感器解耦标定方法研究[J]. 电子与信息学报, 2017, 39(9): 2252-2258. Bing Li, Chunrong Peng, Fengjie Zheng, et al.A decoupling calibration method based on genetic algorithm for three dimensional electric field sensor[J]. Journal of Electronics & Information Technology, 2017, 39(9): 2252-2258. [21] Vesterstrom J, Thomsen R.A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems[C]//Congress on Evolutionary Computation, Portland, OR, 2004: 1980-1987. [22] 方红伟, 宋如楠, 冯郁竹, 等. 基于差分进化的波浪能转换装置阵列优化[J]. 电工技术学报, 2019, 34(12): 2597-2605. Fang Hongwei, Song Runan, Feng Yuzhu, et al.Array optimization of wave energy converters by differential evolution algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2597-2605. [23] 陈薇, 侯杨成, 张里, 等. 计及损耗的钒电池储能系统功率优化分配策略[J]. 电工技术学报, 2020, 35(19): 4038-4047. Chen Wei, Hou Yangcheng, Zhang Li, et al.Power optimization allocation strategy for vanadium battery energy storage system considering loss[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4038-4047. [24] Ye Hongtao, Luo Fei, Xu Yuge.Differential evolution for solving multi-objective optimization problems: a survey of the state-of-the-art[J]. Control Theory & Applications, 2013, 30(7): 922-928.