电工技术学报  2021, Vol. 36 Issue (13): 2832-2843    DOI: 10.19595/j.cnki.1000-6753.tces.200876
电力系统与综合能源 |
基于稀疏增强动态解耦的电力系统振荡模式与模态辨识方法
李雪1, 于洋1, 姜涛1, 李国庆1, 刘春晓2
1.现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学) 吉林 132012;
2.南方电网电力调度控制中心 广州 510623
Sparsity Promoting Dynamic Mode Decomposition Based Dominant Modes and Mode Shapes Estimation in Bulk Power Grid
Li Xue1, Yu Yang1, Jiang Tao1, Li Guoqing1, Liu Chunxiao2
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China;
2. Power Dispatching and Control Center China Southern Power Grid Guangzhou 510623 China
全文: PDF (1862 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 提出一种基于稀疏增强动态解耦(SPDMD)的电力系统主导振荡模式及模态评估方法。该方法首先从电力系统的多通道广域量测信息中辨识出可表征系统关键动态振荡特征信息的低阶状态矩阵;然后,基于该低阶状态矩阵,借助交替方向乘子(ADMM)和拉格朗日乘子(LM)估计各振荡模式的最优振幅系数,根据系统主导振荡模式的最优振幅系数不为0这一特点,从低价状态矩阵中精确筛选出系统的主导振荡模式及模态;最后,将该文所提方法应用到16机68节点测试系统和中国南方电网进行分析,有效验证了所提方法的正确性与实用性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜涛
李雪
李国庆
于洋
姜涛
刘春晓
李国庆
刘春晓
关键词 主导振荡模式广域量测信息稀疏增强动态解耦主导振荡模态主导振荡模式主导振荡模态    
Abstract:This paper proposes a sparsity promoting dynamic mode decomposition (SPDMD) approach for dominant modes and mode shapes assessment in bulk power grid by using the wide area measurement. The SPDMD is first employed to estimate the low-order state matrix containing the critical dynamic oscillation features from the multichannel wide area measurements. Then, the alternating direction multiplier method (ADMM) and Lagrangian multiplier (LM) are used to estimate the optimized amplitude coefficients of the oscillation modes embedded in the low-order state matrix. Further, using the optimized amplitude coefficients, the dominant modes and mode shapes are separated. Finally, the proposed approach was evaluated by the 16-machine 68-bus test system as well as China Southern Power Grid, the results confirm the accuracy and effectively of the proposed SPDMD in dominant modes and mode shapes.
Key wordsWide area measurement information    sparsity promoting dynamic mode decomposition (SPDMD)    dominant modes    Wide area measurement information    dominant mode shapes    sparsity promoting dynamic mode decomposition (SPDMD)    dominant modes    dominant mode shapes   
收稿日期: 2020-07-18     
PACS: TM712  
通讯作者: 姜 涛 男,1983年生,博士,教授,博士生导师,研究方向为电力系统安全性和稳定性、可再生能源集成、综合能源系统。E-mail:t.jiang@aliyun.com   
作者简介: 李 雪 女,1986年生,博士,副教授,硕士生导师,研究方向为电力系统安全性与稳定性、电力系统高性能计算、电力市场。E-mail:xli@neepu.edu.cn
引用本文:   
李雪, 于洋, 姜涛, 李国庆, 刘春晓. 基于稀疏增强动态解耦的电力系统振荡模式与模态辨识方法[J]. 电工技术学报, 2021, 36(13): 2832-2843. Li Xue, Yu Yang, Jiang Tao, Li Guoqing, Liu Chunxiao. Sparsity Promoting Dynamic Mode Decomposition Based Dominant Modes and Mode Shapes Estimation in Bulk Power Grid. Transactions of China Electrotechnical Society, 2021, 36(13): 2832-2843.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.200876          https://dgjsxb.ces-transaction.com/CN/Y2021/V36/I13/2832