A Wind Power Time Series Modeling Method Based on the Improved Markov Chain Monte Carlo Method
Zhu Chenxi1, Zhang Yan1, Yan Zheng1, Zhu Jinzhou1, Zhao Teng2
1. Key Laboratory of Control of Power Transmission and Conversion Ministry of EducationShanghai Jiao Tong University Shanghai 200240 China; 2. Global Energy Interconnection Development and Cooperation Organization Beijing 100031 China
Abstract:Establishing a wind power time series model, which can better reproduce history data's characteristics, is important to the planning and operation of power systems with high permeability of wind energy. First, a self-adaptive strategy was proposed to objectively divide history data into different states, after the parameter optimization method of the moving average filter for the wind power random variable modelling was studied and a state number optimization decision model was constructed. Then, a three dimensional state transition probability matrix, which is used to generate a synthetic wind power state time series, was constructed and then revised along its third dimension for considering the fact that the transition probability changes with the state duration. Last, the existing fluctuation characteristic addition method, by which a synthetic wind power time series is generated, was completed based on analyzing the distributions of the fluctuation quantity and noise. Simulation shows the methodology proposed in this paper can generate synthetic wind power time series better preserving historical characteristics such as the transition and fluctuation characteristics than other Markov Chain Monte Carlo (MCMC) methods, and meanwhile can improve the modelling accuracy without increasing the time complexity of the transition matrix generation algorithm.
朱晨曦, 张焰, 严正, 祝锦舟, 赵腾. 采用改进马尔科夫链蒙特卡洛法的风电功率序列建模[J]. 电工技术学报, 2020, 35(3): 577-589.
Zhu Chenxi, Zhang Yan, Yan Zheng, Zhu Jinzhou, Zhao Teng. A Wind Power Time Series Modeling Method Based on the Improved Markov Chain Monte Carlo Method. Transactions of China Electrotechnical Society, 2020, 35(3): 577-589.
[1] GWEC. Global wind power statistical data 2017[R]. Brussels: GWEC, 2018. [2] 胡源, 别朝红, 宁光涛, 等. 计及风电不确定性的多目标电网规划期望值模型与算法[J]. 电工技术学报, 2016, 31(10): 168-175. Hu Yuan, Bie Zhaohong, Ning Guangtao, et al.The expected model and algorithm of multi-objective transmission network planning considering the uncertainty of wind power[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 168-175. [3] 赵冬梅, 殷加玞. 考虑源荷双侧不确定性的模糊随机机会约束优先目标规划调度模型[J]. 电工技术学报, 2018, 33(5): 1076-1085. Zhao Dongmei, Yin Jiafu.Fuzzy random chance constrained preemptive goal programming scheduling model considering source-side and load-side uncertainty[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1076-1085. [4] 张艺镨, 艾小猛, 方家琨, 等. 基于极限场景的两阶段含分布式电源的配网无功优化[J]. 电工技术学报, 2018, 33(2): 380-389. Zhang Yipu, Ai Xiaomeng, Fang Jiakun, et al.Two-stage reactive power optimization for distribution network with distributed generation based on extreme scenarios[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 380-389. [5] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21): 103-111. Ye Ruili, Guo Zhizhong, Liu Ruiye, et al.Wind speed and wind power forecasting method based on wavelet packet decomposition and improved Elman neural network[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 103-111. [6] 孙国强, 卫志农, 翟玮星. 基于RVM与ARMA误差校正的短期风速预测[J]. 电工技术学报, 2012, 27(8): 187-193. Sun Guoqiang, Wei Zhinong, Zhai Weixing.Short term wind speed forecasting based on RVM and ARMA error correcting[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 187-193. [7] 刘纯, 吕振华, 黄越辉, 等. 长时间尺度风电出力时间序列建模新方法研究[J]. 电力系统保护与控制, 2013, 41(1): 7-13. Liu Chun, Lü Zhenhua, Huang Yuehui, et al.A new method to simulate wind power time series of large time scale[J]. Power System Protection and Control, 2013, 41(1): 7-13. [8] 李驰, 刘纯, 黄越辉, 等. 基于波动特性的风电出力时间序列建模方法研究[J]. 电网技术, 2015, 39(1): 208-214. Li Chi, Liu Chun, Huang Yuehui, et al.Study on the modelling method of wind power time series based on fluctuation characteristics[J]. Power System Technology, 2015, 39(1): 208-214. [9] Papaefthymiou G, Klockl B.MCMC for wind power simulation[J]. IEEE Transactions on Energy Conversion, 2008, 23(1): 234-240. [10] Wu Tong, Ai Xiaomeng, Li Weixing, et al.Markov chain monte carlo method for the modeling of wind power time series[C]//IEEE International Conference on Innovative Smart Grid Technologies, Tianjin, China, 2012: 1-6. [11] 于鹏, 黎静华, 文劲宇, 等. 含风电功率时域特性的风电功率序列建模方法[J]. 中国电机工程学报, 2014, 34(22): 3715-3723. Yu Peng, Li Jinghua, Wen Jinyu, et al.A wind power time series modelling based on its time domain characterisitcs[J]. Proceedings of the CSEE, 2014, 34(22): 3715-3723. [12] 吴桐. 风电功率的特性分析及其时间序列生成方法研究[D]. 武汉: 华中科技大学, 2013. [13] 罗钢, 石东源, 陈金富, 等. 风光发电功率时间序列模拟的MCMC方法[J]. 电网技术, 2014, 38(2): 321-327. Luo Gang, Shi Dongyuan, Chen Jinfu, et al.A markov chain monte carlo method for simulation of wind and solar power time series[J]. Power System Technology, 2014, 38(2): 321-327. [14] 蒋平, 霍雨翀, 张龙, 等. 基于改进一阶马尔科夫链的风速时间序列模型[J]. 电力系统自动化, 2014, 38(19): 22-27. Jiang Ping, Huo Yuchong, Zhang Long, et al.A wind speed time series model based on advanced first-order markov chain approach[J]. Automation of Electric Power Systems, 2014, 38(19): 22-27. [15] 丁明, 鲍玉莹, 毕锐. 应用改进马尔科夫链的光伏出力时间序列模拟[J]. 电网技术, 2016, 40(2): 460-464. Ding Ming, Bao Yuying, Bi Rui.Simulation of PV output time series used improved markov chain[J]. Power System Technology, 2016, 40(2): 460-464. [16] 夏泠风, 黎嘉明, 赵亮, 等. 考虑光伏电站时空相关性的光伏出力序列生成方法[J]. 中国电机工程学报, 2017, 37(7): 1982-1992. Xia Lingfeng, Li Jiaming, Zhao Liang, et al.A PV power time series generating method considering temporal and spatial correlation characteristics[J]. Proceedings of the CSEE, 2017, 37(7): 1982-1992. [17] Ummels B C, Gibescu M, Pelgrum E, et al.Impacts of wind power on thermal generation unit commitment and dispatch[J]. IEEE Transactions on Energy Conversion, 2007, 22(1): 44-51. [18] Silva A M L L, Sales W S, Da Fonseca Manso L A D F, et al. Long-term probabilistic evaluation of operating reserve requirements with renewable sources[J]. IEEE Transactions on Power Systems, 2010, 25(1): 106-116. [19] Wang Jianhui, Shahidehpour M, Li Zuyi.Security-constrained unit commitment with volatile wind power generation[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1319-1327. [20] 王丽婕, 廖晓钟, 高阳, 等. 风电场发电功率的建模和预测研究综述[J]. 电力系统保护与控制, 2009, 37(13): 118-121. Wang Lijie, Liao Xiaozhong, Gao Yang, et al.Summarization of modeling and prediction of wind power generation[J]. Power System Protection and Control, 2009, 37(13): 118-121. [21] Dobakhshari A S, Fotuhi-Firuzabad M.A reliability model of large wind farms for power systems adequacy studies[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 792-801. [22] Tenne T. Offshore wind energy data from a German windfarm[DB/OL]. 2017-11-11. http://www. tennettso. de/site/en/Transparency/publications/network-figures/ actual-and-forecast-wind-energy-feed-in. [23] 郑君里. 信号与系统[M]. 北京: 高等教育出版社, 2011. [24] 汪德星. 电力系统运行中AGC调节需求的分析[J]. 电力系统自动化, 2004, 28(8): 6-9. Wang Dexing.Analysis of AGC demand of power system operation[J]. Automation of Electric Power Systems, 2004, 28(8): 6-9. [25] 段江娇. 基于模型的时间序列数据挖掘[D]. 上海: 复旦大学, 2008. [26] 李滨, 覃芳璐, 吴茵, 等. 基于模糊信息粒化与多策略灵敏度的短期日负荷曲线预测[J]. 电工技术学报, 2017, 32(9): 149-159. Li Bin, Qin Fanglu, Wu Yin, et al.Short-term daily load curve forecasting based on fuzzy information granulation and multi-strategy sensitivity[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 149-159. [27] 丁明, 过翌, 张晶晶, 等. 基于效用风险熵权模糊综合评判的复杂电网节点脆弱性评估[J]. 电工技术学报, 2015, 30(3): 214-222. Ding Ming, Guo Yi, Zhang Jingjing, et al.Node vulnerability assessment for complex power grids based on effect risk entropy-weighted fuzzy comprehensive evaluation[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 214-222. [28] 田铮. 随机过程与应用[M]. 北京: 科学出版社, 2007. [29] 林卫星, 文劲宇, 艾小猛, 等. 风电功率波动特性的概率分布研究[J]. 中国电机工程学报, 2012, 32(1): 38-46. Lin Weixing, Wen Jinyu, Ai Xiaomeng, et al.Probability density function of wind power variations[J]. Proceedings of the CSEE, 2012, 32(1): 38-46. [30] 鲁军, 李侠, 王重马, 等. 基于小波分析的MSMA振动传感器信号处理与故障检测[J]. 电工技术学报, 2015, 30(10): 354-360. Lu Jun, Li Xia, Wang Zhongma, et al.Signal process and fault detection of MSMA vibration sensor based on wavelet analysis[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 354-360. [31] 杨锡运, 刘玉奇, 李建林. 基于四分位法的含储能光伏电站可靠性置信区间计算方法[J]. 电工技术学报, 2017, 32(15): 136-144. Yang Xiyun, Liu Yuqi, Li Jianlin, et al.Reliability confidence interval calculation method for photovoltaic power station with energy storage based on quartile method[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 136-144.