Abstract:As the key equipment of flexible dc distribution network, the control performance and conversion efficiency of DC solid-state transformers (DCSST) are significant for improving system practicability and economic efficiency. Unlike the existing DCSST, this paper presents a hybrid modular solid-state transformer (HMDCSST), which combines the phase shift dual active-bridge (PS-DAB) and the series resonant DAB (SR-DAB) in the way that the inputs are in series and the outputs are paralleled. The PS-DAB has the advantage of flexible voltage control while the SR-DAB features high efficiency, both of which can be inherited by the HMDCSST. Thus comparing with the original DCSST, the HMDCSST can improve power efficiency and reduce system design complexity, without sacrificing the flexible controllability. Working principle of the HMDCSST is analyzed, and the average mathematical model and power loss model are derived. Then detailed analysis of the input/output characteristics and power transmission efficiency under constant output voltage control mode are carried out. Finally, the experimental results show that the proposed HMDCSST can achieve a power efficiency of 96.4%, which is 1.0% higher than traditional PS-DAB based DCSST. In addition, experiments under the input and output disturbance further verify the correctness of working principle and steady-state characteristics.
付超, 武承杰, 孙玉巍, 高振. 混合模块化直流固态变压器 I:工作原理及稳态特性分析[J]. 电工技术学报, 2019, 34(zk1): 141-153.
Fu Chao, Wu Chengjie, Sun Yuwei, Gao Zhen. Hybrid Modular DC Solid State Transformer I: Working Principle and Analysis of Steady State Characteristics. Transactions of China Electrotechnical Society, 2019, 34(zk1): 141-153.
[1] Jia J, Li Q, Cham Y T, et al.Modeling and dynamic characteristic simulation of a proton exchange membrane fuel cell[J]. IEEE Transactions on Energy Conversion, 2009, 24(1): 283-291. [2] 游志宇, 刘涛, 史青, 等. 空冷自增湿质子交换膜燃料电池发电控制器设计[J]. 电工技术学报, 2018, 33(2): 442-450. You Zhiyu, Liu Tao, Shi Qing, et al.Design of generation controller of air-cooled self-humidifying proton exchange membrane fuel cell[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 442-450. [3] 胡鹏, 刘波, 石瑛, 等. 质子交换膜燃料电池前级直流变换器仿真研究[J]. 电源技术, 2016, 40(3): 561-565. Hu Peng, Liu Bo, Shi Ying, et al.Research on proton exchange membrane fuel cell DC converter simulation system[J]. Chinese Journal of Power Sources, 2016, 40(3): 561-565. [4] 刘佳, 李修亮, 沈烨烨, 等. 燃料电池DC-DC变换器的设计与数字化控制[J]. 上海交通大学学报, 2016, 50(6): 910-916. Liu Jia, Li Xiuliang, Shen Yeye, et al.Design and digital control of a DC-DC converter for fuel cells[J]. Journal of Shanghai Jiaotong University, 2016, 50(6): 910-916. [5] Mario Marchesoni, Camillo Vacca.New DC-DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles[J]. IEEE Transa- ctions on Power Electronics, 2007, 22(1): 301-308. [6] 刘俊峰, 胡仁俊, 曾君. 一种非隔离交错工作的高降压比DC-DC功率变换器[J]. 电工技术学报, 2018, 33(20): 4763-4770. Liu Junfeng, Hu Renjun, Zeng Jun.A non-isolated interleaved step-down DC-DC converter with high ratio[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4763-4770. [7] Sundaravadivu K, Arun B, Saravanan K.Design of fractional order PID controller for liquid level control of spherical tank[C]//2011 IEEE International Con- ference on Control System, Computing and Engin- eering, Penang, Malaysia, 2011: 291-295. [8] 吴振宇, 赵亮, 冯林. 基于分数阶PID控制器的智能车控制[J]. 控制工程, 2011, 18(3): 401-404. Wu Zhenyu, Zhao Liang, Feng Lin.Control of intelligent vehicle based on fractional order PID[J]. Control Engineering of China, 2011, 18(3): 401-404. [9] Viola J, Angel L, Sebastian J M.Design and robust performance evaluation of a fractional order PID controller applied to a DC motor[J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(2): 304-314. [10] 任小永, 唐钊, 阮新波, 等. 一种新颖的四开关Buck-Boost变换器[J]. 中国电机工程学报, 2008, 28(21): 15-19. Ren Xiaoyong, Tang Zhao, Ruan Xinbo, et al.A novel four switch Buck-Boost converter[J]. Pro- ceedings of the CSEE, 2008, 28(21): 15-19. [11] 李红梅, 张恒果, 崔超. 车载充电PWM软开关DC-DC变换器研究综述[J]. 电工技术学报, 2017, 32(24): 59-70. Li Hongmei, Zhang Hengguo, Cui Cao.Review of PWM soft-switching DC-DC converter for on-board chargers research[J]. Transactions of China Electro- technical Society, 2017, 32(24): 59-70. [12] 任小永, 阮新波, 李明秋, 等. 双沿调制的四开关Buck-Boost变换器[J]. 中国电机工程学报, 2009, 29(12): 16-23. Ren Xiaoyong, Ruan Xinbo, Li Mingqiu, et al.Dual edge modulated four-switch Buck-Boost converter[J]. Proceedings of the CSEE, 2009, 29(12): 16-23. [13] 徐德鸿. 电力电子系统建模与控制[M]. 北京: 机械工业出版社, 2005. [14] 朱呈祥, 邹云. 分数阶控制研究综述[J]. 控制与决策, 2009, 24(2): 161-169. Zhu Chengxiang, Zou Yun.Summary of research on fractional-order control[J]. Control and Decision, 2009, 24(2): 161-169. [15] 窦春霞, 李娜, 徐晓龙. 基于多智能体系统的微电网分散协调控制策略[J]. 电工技术学报, 2015, 30(7): 125-134. Dou Chunxia, Li Na, Xu Xiaolong.Multi-agent system based decentralized coordinated control strategy for micro-grids[J]. Transactions of China Electrotechnical Society, 2015, 30(7): 125-134. [16] 彭道刚, 陈跃伟, 钱玉良, 等. 基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J]. 电工技术学报, 2018, 33(8): 1742-1749, 1761. Peng Daogang, Chen Yuewei, Qian Yuliang, et al.Transformer winding temperature soft measurement model based on particle swarm optimization support vector regression[J]. Transactions of China Electro- technical Society, 2018, 33(8): 1742-1749, 1761. [17] Kennedy J, Eberhart R C.Particle swarm optimi- zation[C]//IEEE international conference on Neural Networks, Perth, Australia, 1995: 1942-1948. [18] 王春阳, 李明秋, 姜苏华. 分数控制系统设计[M]. 北京: 国防工业出版, 2014.