Research on Magnetic Resonance Cooperative Operating Mode Based on γ Matching
Wei Bin1, Wang Songcen1, Wu Xiaokang1, Meng Hao2, Zhang Xian2
1. China Electric Power Research Institute Beijing 100192 China; 2. Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology Tianjin Polytechnic University Tianjin 300387 China
Abstract:Based on the four-coil magnetic resonance wireless power transfer system, a magnetic resonance cooperative operating mode is proposed in this paper, which realizes the tight-strong coupling cooperative operating and optimizes the transmission efficiency between coils. In order to solve the impedance matching problem, a resonance coil with γ matching is designed, and its matching method is summarized. The input impedance of the resonance coil can be adjusted to match the output impedance of high-frequency power supply and load impedance. Finally, an experimental platform is established. The experimental results show that the coils can match the output impedance of high-frequency power supply and the load impedance accurately in the magnetic resonance cooperative operating mode, and the transmission efficiency can reach 40% at 60cm. Moreover, the coil design method in this paper also provides a new idea for the coil design of mid-range wireless power transfer system.
魏斌, 王松岑, 吴晓康, 孟浩, 张献. 基于γ匹配的磁共振协同工作方式研究[J]. 电工技术学报, 2018, 33(zk2): 278-286.
Wei Bin, Wang Songcen, Wu Xiaokang, Meng Hao, Zhang Xian. Research on Magnetic Resonance Cooperative Operating Mode Based on γ Matching. Transactions of China Electrotechnical Society, 2018, 33(zk2): 278-286.
[1] 杨庆新, 章鹏程, 祝丽花, 等. 无线电能传输技术的关键基础与技术瓶颈问题[J]. 电工技术学报, 2015, 30(5): 1-8. Yang Qingxin, Zhang Pengcheng, Zhu Lihua, et al.Key fundamental problems and technical bottlenecks of the wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 1-8. [2] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18): 3-17. Zhang Bo, Shu Xujian, Huang Runhong.The development of inductive and resonant wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 3-17. [3] 张献, 杨庆新, 崔玉龙, 等. 大功率无线电能传输系统能量发射线圈设计、优化与验证[J]. 电工技术学报, 2013, 28(10): 12-18. Zhang Xian, Yang Qingxin, Cui Yulong, et al.Design optimization and verification on the power trans- mitting coil in the high-power wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 12-18. [4] Kurs A, Karalis A, Moffatt R, et al.Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86. [5] 张献, 章鹏程, 杨庆新, 等. 基于有限元方法的电动汽车无线充电耦合机构的磁屏蔽设计与分析[J]. 电工技术学报, 2016, 31(1): 71-79. Zhang Xian, Zhang Pengcheng, Yang Qingxin, et al.Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method[J]. Transactions of China Electro- technical Society, 2016, 31(1): 71-79. [6] 徐桂芝, 李晨曦, 赵军, 等. 电动汽车无线充电电磁环境安全性研究[J]. 电工技术学报, 2017, 32(22): 152-157. Xu Guizhi, Li Chenxi, Zhao Jun, et al.Elec- tromagnetic enrironment safety study of wireless electric vehicle charging[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 152-157. [7] Zhang Xian, Yuan Zhaoyang, Yang Qingxin, et al.Coil design and efficiency analysis for dynamic wireless charging system for electric vehicles[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1-4. [8] Li Long, Liu Haixia, Zhang Huiying, et al.Efficient wireless power transfer system integrating with metasurface for biological applications[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3230-3239. [9] Park J, Kim D, Hwang K, et al.A resonant reactive shielding for planar wireless power transfer system in smartphone application[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 695-703. [10] Hui S Y R, Zhong Wenxing, Lee C K. A critical review of recent progress in mid-range wireless power transfer[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4500-4511. [11] Duong T P, Lee J W.Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method[J]. IEEE Microwave and Wireless Components Letters, 2011, 21(8): 442-444. [12] 卢文成, 丘小辉, 毛行奎. 磁谐振无线电能传输系统的阻抗匹配特性分析[J]. 电器与能效管理技术, 2015(6): 1-5. Lu Wencheng, Qiu Xiaohui, Mao Xingkui.Analysis on impedance matching characteristics of wireless power transfer system via magnetic resonance[J]. Electrical & Energy Management Technology, 2015(6): 1-5. [13] 黄智慧, 王林, 邹积岩. 双中继和三中继线圈位置参数对无线电能传输功率的影响[J]. 电工技术学报, 2017, 32(5): 208-214. Huang Zhihui, Wang Lin, Zou Jiyan.The influence of coil location parameters to load power in wireless power transmission with two or three relay coils[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 208-214. [14] Lee C K, Zhong W X, Hui S Y R. Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 1905-1916. [15] Kiani M, Jow U M, Ghovanloo M.Design and optimization of a 3-coil inductive link for efficient wireless power transmission[J]. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5(6): 579-591. [16] Pablo P N, Fernando S.Matching networks for maximum efficiency in two and three coil wireless power transfer systems[C]//2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS), Florianópolis, 2016: 215-218. [17] Lim Y, Tang H, Lim S, et al.An adaptive impedance- matching network based on a novel capacitor matrix for wireless power transfer[J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4403-4413. [18] Kim J, Kim D H, Park Y J.Free-positioning wireless power transfer to multiple devices using a planar transmitting coil and switchable impedance matching networks[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(11): 3714-3722. [19] Lee G, Waters B H, Shin Y G, et al.A reconfigurable resonant coil for range adaptation wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(2): 624-632. [20] Ahn D, Hong S.Wireless power transfer resonance coupling amplification by load-modulation switching controller[J]. IEEE Transactions on Industrial Elec- tronics, 2015, 62(2): 898-909. [21] 杨依挺. 八木天线的伽玛馈电[J]. 通讯装备, 1980(4): 1-7. Yang Yiting.Gamma feed of yagi antenna[J]. Mobile Communications, 1980(4): 1-7. [22] 张献, 金耀, 苑朝阳, 等. 电动汽车动态无线充电紧-强耦合模式分析[J]. 电力系统自动化, 2017, 41(2): 79-83. Zhang Xian, Jin Yao, Yuan Zhaoyang, et al.Analysis of tight-strong coupling mode for dynamic wireless charging of electric vehicle[J]. Automation of Electric Power Systems, 2017, 41(2): 79-83. [23] Deng Qijun, Liu Jiangtao, Czarkowski D, et al.Frequency-dependent resistance of litz-wire square solenoid coils and quality factor optimization for wireless power transfer[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2825-2837. [24] 邱利莎, 黄守道, 李中启. 磁耦合谐振式无线输电系统的阻抗匹配研究[J]. 电力电子技术, 2015, 49(10): 86-88. Qiu Lisha, Huang Shoudao, Li Zhongqi.Research on impedance matching of wireless power transfer system via coupled magnetic resonances[J]. Power Electronics, 2015, 49(10): 86-88.