Wind Tunnel DC Contamination Performance of Typical Suspension Insulator and Its Analysis
Zhang Dongdong1, Zhang Zhijin1, Jiang Xingliang1, Hu Jianlin1, Liu Xiaohuan2
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. State Grid Jingmen Power Supply Bureau Jingmen 448000 China
Abstract:The pollution particle depositing and moving process on DC transmission line energized insulator will be obviously affected by its surrounding electric field. Currently, energized insulator contamination rules and the corresponding mechanism are not fully revealed yet. In this paper, taking XP-160 typical suspension insulator as the object, its DC contamination tests under various wind velocity and pollution particle diameter were carried out using wind tunnel platform. The DC contamination performances were analyzed. The discrepancy of pollution degree between DC energized insulator and non-energized insulator was obtained. Then combining with field charging theory, t the bearing forces of pollution particles were calculated and analyzed, and the variation of the particles’ moving process as well as their moving speed by DC electric field were studied. Finally the effects of insulator DC electric field on its contamination were revealed.
张东东, 张志劲, 蒋兴良, 胡建林, 刘小欢. 典型悬式绝缘子风洞直流积污特性与分析[J]. 电工技术学报, 2018, 33(19): 4636-4645.
Zhang Dongdong, Zhang Zhijin, Jiang Xingliang, Hu Jianlin, Liu Xiaohuan. Wind Tunnel DC Contamination Performance of Typical Suspension Insulator and Its Analysis. Transactions of China Electrotechnical Society, 2018, 33(19): 4636-4645.
[1] 孟志高, 蒋兴良, 董冰冰, 等. 自然雾条件下严重染污玻璃、复合绝缘子交流污闪特性[J]. 电工技术学报, 2016, 31(12): 65-71.Meng Zhigao, Jiang Xingliang, Dong Bingbing, et al. AC pollution flashover characteristics of surged polluted glass and composite insulators under natural fog conditions[J]. Transactions of China Electricotechnical Society, 2016, 31(12): 65-71. [2] 谷裕, 阳林, 张福增, 等. 高海拔地区特高压换流站大尺寸复合支柱绝缘子直流污闪特性[J]. 电工技术学报, 2016, 31(10): 93-101.Gu Yu, Yang Lin, Zhang Fuzeng, et al. DC pollution flashover performance of ultra high voltage convert stations large-size composite post insulators at high altitudes areas[J]. Transactions of China Electricotechnical Society, 2016, 31(10): 93-101. [3] 吕玉坤, 赵伟萍, 庞广陆, 等. 典型伞型瓷及复合绝缘子积污特性模拟研究[J]. 电工技术学报, 2018, 33(1): 209-216.Lü Yukun, Zhao Weiping, Pang Guanglu, et al. Simulation of contamination deposition on typical shed porcelain and composite insulators[J]. Transactions of China Electricotechnical Society, 2018, 33(1): 209-216. [4] 宿志一, 范建斌, 谷琛, 等. 高压直流换流站污秽水平预测方法研究[J]. 中国电机工程学报, 2007, 27(13): 1-5.Su Zhiyi, Fan Jianbin, Gu Chen, et al. The research of pollution level prediction method of HVDC converter stations[J]. Proceedings of the CSEE, 2007, 27(13): 1-5. [5] 律方成, 黄华, 刘云鹏, 等. 风洞模拟自然横风条件下绝缘子带电积污特性[J]. 高电压技术, 2014, 40(5): 1281-1289.Lü Fangcheng, Huang Hua, Liu Yunpeng, et al. Contamination depositing characteristics of insulators under natural crosswind conditions with wind tunnel simulation[J]. High Voltage Engineering, 2014, 40(5): 1281-1289. [6] Lü Yukun, Li Jingang, Zhan Xuemei, et al.A simulation study on pollution accumulation characteristics of XP13-160 porcelain suspension disc insulator[J]. IEEE Transactions on Dielectric Electric and Insulation, 2016, 23(4): 2196-2206. [7] 方春华. 绝缘子积污特性和污秽状态监测方法[D]. 武汉: 武汉大学, 2012. [8] 卢明, 李瑶琴, 李黎, 等. 哈郑特高压直流负极线路上U70BL型绝缘子自然积污规律[J]. 高电压技术, 2016 42(2): 557-563.Lu Ming. Li Yaoqin, Li Li, et al. Natural contamination deposit law of U70BL type insulators of Hami-Zhengzhou UHVDC negative line[J]. High Voltage Engineering, 2016, 42(2): 557-563. [9] 李特, 王少华, 柳青山, 等. ±800 kV特高压宾金直流悬式及支柱绝缘子自然积污特性[J]. 电网技术, 2017, 41(11): 3553-3558.Li Te, Wang Shaohua, Liu Qingshan, et al. Test research on the natural contamination performance of suspension and post insulators from ±800 kV Yibin-Jinhua ultra-high DC transmission project[J]. Power System Technology, 2017, 41(11): 3553-3558. [10] Chao Yafeng, Huang Fuyong, Zhao Shihua, et al.Study on natural pollution accumulating characteristics of cap and pin suspension ceramic insulator with composite shed of DC 500 kV transmission line in central China[C]//2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Chengdu, China, 2016: 1-4. [11] 谷裕. 高海拔地区特高压直流复合支柱绝缘子伞裙优化和污闪特性研究[D]. 广州: 华南理工大学, 2014. [12] 马振良. 不带电绝缘子和带电绝缘子积污程度的对比实验[J]. 高电压技术, 1993, 19(4): 33-35.Ma Zhenliang. A comparison experiment of pollution degree of insulators at work and those out of action[J]. High Voltage Engineering, 1993, 19(4): 33-35. [13] Gertsik A K, Korsuntser A V, Nikolskii N K.The effect of fouling on insulators for HVDC overhead lines[J]. Direct Current, 1957(12): 219-226. [14] Olsen R G, Furumasu B C, Hartmann D P. Contamination mechanisms for HVDC insulators[C]// IEEE Power Apparatus and Systems Winter Conference, New York, USA, 1977: 77-035-9. [15] Horenstein M N, Melcher J R.Particle contamination of high voltage DC insulators below corona threshold[J]. IEEE Transactions on Electrical Insulation, 1979, 14(6): 297-305. [16] Jayaratne E R, Fatokun F O J, Morawska L. Air ion concentrations under overhead high-voltage transmission lines[J]. Atmosphere Environment, 2008, 42(3): 1846-1856. [17] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 上海复旦大学出版社, 1995. [18] 祁君西, 党小庆, 张滨渭. 现代烟气除尘蚊术[M]. 北京: 化学工业出版社, 2008. [19] 张伟. 典型绝缘子积污特性数值仿真[D]. 重庆: 重庆大学, 2016.