Abstract:Under repetitive dynamic shock waves, the blockage at the oil well perforation can be broken and removed from the bore-hole wall, and the fracture to increase the permeability of the hole-bottom region can be formed. Then the oil production of the well is improved. In this paper, a test platform of the oil well stimulation based on the electrohydraulic shock waves was designed and constructed. The electrical parameters, shock wave intensity, and expansion process of the plasma channel and cavity were observed. The preliminary experiments were carried out on some hollow cylinder concrete specimens. The influence of the injected electrical energy and the applied shock wave shot number on the fracture of the specimen was investigated. The experimental results show that the shock wave can increase the permeability.
刘毅, 李志远, 李显东, 林福昌, 潘垣. 水中脉冲激波对模拟岩层破碎试验[J]. 电工技术学报, 2016, 31(24): 71-78.
Liu Yi, Li Zhiyuan, Li Xiandong, Lin Fuchang, Pan Yuan. Experiments on the Fracture of Simulated Stratum by Underwater Pulsed Discharge Shock Waves. Transactions of China Electrotechnical Society, 2016, 31(24): 71-78.
[1] 张光焰, 王志勇, 刘延涛, 等. 国内注聚井堵塞及化学解堵技术研究进展[J]. 油田化学, 2006, 23(4): 385-388, 374. Zhang Guangyan, Wang Zhiyong, Liu Yantao, et al. Blockage creation in polymer injection wells and chemical ways of blockage removal: a review[J]. Oilfield Chemistry, 2006, 23(4): 385-388, 374. [2] 姜瑞忠, 蒋廷学, 汪永利. 水力压裂技术的近期发展及展望[J]. 石油钻采工艺, 2004, 26(4): 52-57, 84. Jiang Ruizhong, Jiang Tingxue, Wang Yongli. Present development and prospecting of hydraulic fracturing technology[J]. Oil Drilling & Production Technology, 2004, 26(4): 52-57, 84. [3] 李伟翰, 颜红侠, 王世英, 等. 多脉冲高能气体压裂-热化学解堵综合增产技术[J]. 数字石油, 2005, 22(3): 223-226. Li Weihan, Yan Hongxia, Wang Shiying, et al. Mitli-pulse high energy gas fracturing/thermoche- mical blockage relieving combined method for reservoir stimulation[J]. Oilfield Chemistry, 2005, 22(3): 223-226. [4] 张永民, 邱爱慈, 周海滨, 等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术, 2016, 42(4): 1009-1017. Zhang Yongmin, Qiu Aici, Zhou Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009-1017. [5] Chen W, Maurel O, Reess T, et al. Experimental study on an alternative oil stimulation technique for tight gas reservoirs based on dynamic shock waves generated by pulsed arc electrohydraulic discharges[J]. Journal of Petroleum Science and Engineering, 2012, 88(89): 67-74. [6] 秦勇, 邱爱慈, 张永民, 等. 高聚能重复强脉冲波煤储层增渗新技术试验与探索[J]. 煤炭科学技术, 2014, 42(6): 1-7, 70. Qin Yong, Qiu Aici, Zhang Yongmin, et al. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation[J]. Coal Science and Technology, 2014, 42(6): 1-7, 70. [7] 王聪, 王浩, 白利军. 煤层气抽采机感应电机运行最优速度曲线控制策略研究[J]. 电工技术学报, 2016, 31(11): 75-83. Wang Cong, Wang Hao, Bai Lijun. Research on control strategy based on optimal speed curve of induction motor for CBM-well pumping units[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 75-83. [8] 韩波, 王新新, 郭志刚, 等. 脉冲大电流放电技术在疏通油井上的应用[J]. 电工电能新技术, 1998(1): 38-42. Han Bo, Wang Xinxin, Guo Zhigang, et al. Appli- cations of impulse discharge with high current technique on oil well plug-releasing[J]. Advanced Technology of Electrical Engineering and Energy, 1998(1): 38-42. [9] 孙凤举, 曾正中, 邱毓昌, 等. 一种用于油水井解堵的脉冲大电流源[J]. 高电压技术, 1999, 25(2): 47-49. Sun Fengju, Zeng Zhengzhong, Qiu Yuchang, et al. Pulse high current power supply used for dredging oil & water well[J]. High Voltage Engineering, 1999, 25(2): 47-49. [10] Blue Spark Energy Corporation. WASP-Wireline Applied Stimulation Pulses[EB/OL]. http://www. bluesparkenergy.net. [11] 贾富泽, 李幸兰, 李建勇, 等. 低频电脉冲解堵技术在油田生产中的应用[J]. 内蒙古石油化工, 2006, 32(5): 172-173. Jia Fuze, Li Xinglan, Li Jianyong, et al. Impulse discharge stimulation technique applied to oil wells plug-releasing[J]. Inner Mongolian Petrochemical Industry, 2006, 32(5): 172-173. [12] 陆小兵, 王守虎, 隋蕾, 等. 电脉冲解堵增注机理分析及应用[J]. 天然气与石油, 2011, 29(6): 61-62. Lu Xiaobing, Wang Shouhu, Sui Lei, et al. Analysis and application of electronic pulse de-plugging and injection-adding mechanism[J]. Oil and Gas Field Development, 2011, 29(6): 61-62. [13] 孙鹞鸿, 孙广生, 严萍. 大功率电脉冲采油技术原理与应用[J]. 钻采工艺, 2002, 25(5): 53-55. Sun Yaohong, Sun Guangsheng, Yan Ping. High- power electrical impulse oil recovery technology and its application[J]. Drilling & Production Technology, 2002, 25(5): 53-55. [14] 金明剑, 孙鹞鸿. 不同参数条件下水中脉冲放电的电学特性研究[J]. 高电压技术, 2004, 30(7): 46-49. Jin Mingjian, Sun Yaohong. The electrical characte- ristics of underwater pulsed discharge under different experiment parameters[J]. High Voltage Engineering, 2004, 30(7): 46-49. [15] Claverie A, Deroy J, Boustie M, et al. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed under- water electrical discharge[J]. Review of Scientific Instruments, 2014, 85(6): 0637(1-8). [16] Fedotov-Gefen A, Efimov S, Gilburd L, et al. Generation of a 400GPa pressure in water using converging strong shock waves[J]. Physics of Plasmas (1994-present), 2011, 18(6): 062701(1-8). [17] Zhou H, Han R, Liu Q, et al. Generation of electrohydraulic shock waves by plasma-ignited energetic materials: II. influence of wire configuration and stored energy[J]. IEEE Transactions on Plasma Science, 2015, 43(12): 4009-4016. [18] Touya G, Reess T, Pecastaing L, et al. Development of subsonic electrical discharges in water and measurements of the associated pressure waves[J]. Journal of Physics D: Applied Physics, 2006, 39(24): 5236-5244. [19] 孙建军, 张颖杰, 庄海, 等. 水下大电流脉冲放电仿真与实验[J]. 中国电机工程学报, 2009, 29(增): 67-72. Sun Jianjun, Zhang Yingjie, Zhuang Hai, et al. Simulation and experiment of underwater high current pulse discharge[J]. Proceedings of the CSEE, 2009, 29(S): 67-72. [20] 毛晓坡, 何正浩, 王英, 等. 激光触发真空开关的目标材料触发特性[J]. 电工技术学报, 2016, 31(9): 169-173. Mao Xiaopo, He Zhenghao, Wang Ying, et al. Triggered characteristics of the target material within laser triggered vacuum switches[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 169- 173. [21] 王一博. 水中等离子体声源的理论与实验研究[D]. 长沙: 国防科学技术大学, 2012. [22] Stelmashuk V. Time evolution of a high-voltage discharge in water with shock wave assistance in a pin to pin geometry[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2614-2615. [23] 周海滨, 韩若愚, 吴佳玮, 等. 水中铜丝电爆炸放电通道模型及仿真[J]. 高电压技术, 2015, 41(9): 2943-2949. Zhou Haibin, Han Ruoyu, Wu Jiawei, et al. Model and simulation study of discharge channel during underwater Cu wire explosion[J]. High Voltage Engineering, 2015, 41(9): 2943-2949. [24] 翟国富, 薄凯, 李庆楠, 等. 直流电弧运动过程中重击穿现象及机理研究[J]. 电工技术学报, 2016, 31(11): 105-113. Zhai Guofu, Bo Kai, Li Qingnan, et al. Research on restriking phenomena and mechanism during DC arc motion process[J]. Transactions of China Electro- technical Society, 2016, 31(11): 105-113. [25] 卢新培, 潘垣, 张寒虹. 水中脉冲放电的电特性与声辐射特性研究[J]. 物理学报, 2002, 51(7): 1549- 1553. Lu Xinpei, Pan Yuan, Zhang Hanhong. The electrical and acoustical characteristics of pulsed discharge in water[J]. Acta Physica Sinica, 2002, 51(7): 1549- 1553. [26] Oison A H, Sutton S P. The physical mechanisms leading to electrical breakdown in underwater arc sound sources[J]. Journal of Acoustic Sciences, 1993, 94: 2226-2231. [27] 朱璐, 黄倩, 徐宇航, 等. 脉冲电弧液电放电压力波特性实验研究[J]. 高电压技术, 2015, 41(10): 3518-3522. Zhu Lu, Huang Qian, Xu Yuhang, et al. Experimental research on pressure waves of pulse arc electro- hydraulic discharge[J]. High Voltage Engineering, 2015, 41(10): 3518-3522. [28] Zhekul V G, Poklonov S G, Smirnov A P. Experimental studies of the effectiveness of the electro-discharge effect on a physical model of the bottom-hole zone of the productive layer[J]. Surface Engineering and Applied Electrochemistry, 2011, 47(1): 89-93. [29] 章志成, 裴彦良, 刘振, 等. 高压短脉冲作用下岩石击穿特性的实验研究[J]. 高电压技术, 2012, 38(7): 1719-1724. Zhang Zhicheng, Pei Yanliang, Liu Zhen, et al. Experimental research on rock breakdown under short high-voltage pulse[J]. High Voltage Engin- eering, 2012, 38(7): 1719-1724.