Abstract:Based on the arc mathematical model for the SF6 circuit breaker (CB), the equations describing the arc chaotic behavior are deduced by considering the velocity and temperature effect in the model as the chaotic characteristics and expending in 2D form using the convergence of Fourier series. The time series and Lyapunov exponents diagram reflecting the chaotic behavior of arc are obtained based on the numerical analyses, which proves that the arc behavior exist chaos during the arc quenching. In order to reflect the interactions of the coupling of the electric field, magnetic field and gas flow field, the arc instability in SF6 CB was analyzed and the third-order nonlinear differential equations with constant coefficient for the arc in SF6 CB has been obtained by introducing Maxwell and current density equations in the arc mathematical model. By adjusting the parameters for SF6 CB, the system exhibits significant chaotic behavior.
刘晓明, 韩颖, 王尔智, 曹云东, 安跃军, 谢利军, 冷雪. 基于多物理场耦合的高压SF6断路器混沌电弧模型[J]. 电工技术学报, 2013, 28(1): 165-172.
Liu Xiaoming, Han Ying, Wang Erzhi, Cao Yundong, An Yuejun, Xie Lijun, Leng Xue. Chaos of Arc Model for SF6 Circuit Breaker Based on Coupled Multiple-Physical Field Simulation. Transactions of China Electrotechnical Society, 2013, 28(1): 165-172.
[1] 曹云东. 电器学原理[M]. 北京: 机械工业出版社, 2012. [2] 黎斌. SF6高压电器设计[M]. 北京: 机械工业出版社, 2003. [3] Park K Y, Fang M T C.Mathematical modeling of SF6 puffer circuit breakers partⅠ: high current region[J]. IEEE Transactions on Plasma Science, 1996, 24(2): 490-502. [4] 黄润生. 混沌及其应用[M]. 武汉:武汉大学出版社, 2000. [5] 宋超. 基于压力时间序列的SF6断路器混沌现象识别研究[D]. 沈阳: 沈阳工业大学, 2010. [6] 刘晓明, 王尔智, 曹云东. 高压SF6断路器电弧动态模型研究[J]. 中国电机工程学报, 2004, 24(2): 102-106. Liu X M, Wang E Z, Cao Y D. Study on dynamic arc model for high SF6 circuit breaker[J]. Proceedings of the CSEE, 2004, 24(2): 102-106. [7] 刘晓明, 曹云东, 王尔智.高压SF6断路器电弧与气流相互作用研究[J].中国电机工程学报, 2005, 25(7): 151-155. Liu X M, Cao Y D, Wang E Z. Study on arc flow interaction for a high voltage SF6 circuit breaker[J]. Proceedings of the CSEE, 2005, 25(7): 151-155. [8] 曹云东, 王尔智.高压断路器气流场有限体积及TVD格式法的研究[J].电工技术学报, 2002, 17(1): 68-73. Cao Y D, Wang E Z .Study on finite volume method and TVD scheme for calculating the flow field of high voltage circuit breaker[J]. Transaction of China Electrotechnical Society, 2002, 17(1): 68-73. [9] Lorenz E N.混沌的本质[M]. 北京: 气象出版社, 1997. [10] Cross M C, Hohenberg P C.Pattern formation outside equilibrium[J]. Rev.Mod. Phys, 1993, 65(1): 851- 1112. [11] Arneodo A, Coullet P H, Spiegel E A.The dynamics of triple convection[J]. Geophys. Astrophys. Fluid Dynam, 1985, 31(31): 1-48, [12] Arneodo A, Thual O. Transition to chaos in a finite macroscopic system: direct numerical simulation versus normal form prediction[J]. 1987, 31(1): 313- 333. [13] 张琪昌, 等. 分岔与混沌理论及其研究[M]. 天津: 天津大学出版社, 2006. [14] Richtmyer R, Taylor D. Instability in a shock acceleration of compressible of fluids[J] Communi- cations on Pure Applied Mathematics, 1960, 13(5): 297-319. [15] Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Izv.Akad.Nauk.SSSR Mekh Zhidk Gaza, 1969, 4(5): 151-158. [16] Goldstein M E, Choi S W. Nonlinear evolution of interacting oblique wave on two dimensional shear layers[J]. Fluid Mech, 1989, 20 (7): 97-120. [17] Lib S J. Nonlinear evolution of subsonic and s upersonic disturbances on a compressible free layer[J]. Fluid Mech, 1991, 22(4): 551-578.