Weighting Factors Design of Model Predictive Control for Permanent Magnet Synchronous Machine Using Particle Swarm Optimization
Li Jiaxiang1,2, Wang Fengxiang1,2, Ke Dongliang2, Li Zheng2, He Long2
1. College of Electrical Engineering and Automation Fuzhou University Fuzhou 350108 China; 2. National and local joint Engineering Research Center for Electrical Drives and Power Electronics Quanzhou Institute of Equipment Manufacturing Haixi Institute Chinese Academy of Sciences Quanzhou 362200 China
Abstract:In this paper, a dynamic recombined multi-population particle swarm optimization algorithm based on chaotic-mutation (CDMSPSO) is proposed to realize self-tuning of the weighting factors when model predictive control algorithm (MPC) is dealing with multi-objective and multi-constraint conditions. By analyzing the design principle of cost function in the model predictive torque control (MPTC), taking the root mean square of the current error in the two-phase rotating coordinate system as a reference, the objective function of particles in particle swarm optimization is designed with reducing the torque ripple and reducing the current total harmonic distortion (THD) as the main control objectives. The whole population was divided into several small sub-particle swarms by using CDMSPSO, and the particles were randomly recombined with a certain recombination period, then a random sub-particle swarm is selected and chaotic sequence is generated iteratively on the basis of any particle, and the selected sub-particle swarm is replaced by the new chaotic sequence to realize chaotic mutation of particles. Simulation and experimental results show that this method can solve the problem of weighting factors setting well and achieve excellent steady-state performance.
李家祥, 汪凤翔, 柯栋梁, 李政, 何龙. 基于粒子群算法的永磁同步电机模型预测控制权重系数设计[J]. 电工技术学报, 2021, 36(1): 50-59.
Li Jiaxiang, Wang FengxiangKe Dongliang, Li Zheng, He Long. Weighting Factors Design of Model Predictive Control for Permanent Magnet Synchronous Machine Using Particle Swarm Optimization. Transactions of China Electrotechnical Society, 2021, 36(1): 50-59.
[1] 陈炜, 曾思坷, 张国政, 等. 永磁同步电机改进型三矢量模型预测转矩控制[J]. 电工技术学报, 2018, 33(增刊2):420-426.Chen Wei, Zeng Sike, Zhang Guozheng, et al. Improved three-vector model predictive torque control of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 420-426. [2] Aoyama M, Deng J.Visualization and quantitative evaluation of eddy current loss in bar-wound type permanent magnet synchronous motor for mild-hybrid vehicles[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(3): 269-278. [3] 班斐, 连广坤, 陈彪, 等. 针对永磁同步电机的解耦预测转矩控制策略研究及其无位置传感器对比分析[J]. 电工技术学报, 2018, 33(增刊2): 401-410.Ban Fei, Lian Guangkun, Chen Biao, et al. Comparative analysis of sensorless control methods based on the decoupling predictive torque control strategy for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 401-410. [4] 魏尧, 魏艳君, 马云飞, 等. 永磁同步电机转子位置的级联预测控制[J]. 电工技术学报, 2019, 34(1): 41-48.Wei Yao, Wei Yanjun, Ma Yunfei, et al. Cascade predictive control for rotor position of permanent magnet synchronous machines[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 41-48. [5] 刘珅, 高琳. 永磁同步电机的改进模型预测直接转矩控制[J]. 电机与控制学报, 2020, 24(1): 10-17.Liu Shen, Gao Lin. Improved model of predictive direct torque control for permanent magnet synchronous motor[J]. Electric Machines and Control, 2020, 24(1): 10-17. [6] Cortes P, Rodriguez J, Vargas R, et al.Cost function-based predictive control for power converters[C]// IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 2006: 2268-2273. [7] 张永昌, 杨海涛. 感应电机模型预测磁链控制[J]. 中国电机工程学报, 2015, 35(3): 719-726. Zhang Yongchang, Yang Haitao.Model predictive flux control for induction motor drives[J]. Proceedings of the CSEE, 2015, 35(3): 719-726. [8] 康劲松, 李旭东, 王硕. 计及参数误差的永磁同步电机最优虚拟矢量预测电流控制[J]. 电工技术学报, 2018, 33(24): 5731-5740.Kang Jinsong, Li Xudong, Wang Shuo. Optimal virtual vector predictive current control for permanent magnet synchronous motor considering parameter errors[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5731-5740. [9] 郭磊磊, 金楠, 李琰琰, 等. 电压源逆变器虚拟矢量模型预测共模电压抑制方法[J]. 电工技术学报, 2020, 35(4): 839-849.Gou Lielie, Jin Nan, Li Yanyan, et al. Virtual vector based model predictive common-mode voltage reduction method for voltage source inverters[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 839-849. [10] Zhang Xiaoguang, Hou Benshuai.Double vectors model predictive torque control without weighting factor based on voltage tracking error[J]. IEEE Transactions on Power Electronics, 2018, 33(3): 2368-2380. [11] 李耀华, 秦辉, 苏锦仕, 等. 永磁同步电机模糊自适应变开关次数权重系数模型预测转矩控制[J]. 电机与控制学报, 2020, 永磁同步电机模糊自适应变开关次数权重系数模型预测转矩控制[J]. 电机与控制学报, 2020, http://kns.cnki.net/kcms/ detail/23.1408.TM.20200117.1645.031.html. Li Yaohua, Qin Hui, Su Jinshi, et al.Model predictive torque control of permanent magnet synchronous motor based on adaptive dynamic weight coefficient using fuzzy control[J]. Electric Machines and Control, 2020, Model predictive torque control of permanent magnet synchronous motor based on adaptive dynamic weight coefficient using fuzzy control[J]. Electric Machines and Control, 2020, http://kns.cnki.net/kcms/detail/23.1408.TM. 20200117. 1645.031.html [12] Hadla H, Cruz S.Predictive stator flux and load angle control of synchronous reluctance motor drives operating in a wide speed range[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 6950-6959. [13] Davari S A, Khaburi D A, Kennel R.An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor[J]. IEEE Transactions on Power Electronics, 2012, 27(3): 1540-1551. [14] Norambuena M, Rodriguez J, Zhang Z, et al.A very simple strategy for high-quality performance of AC machines using model predictive control[J]. IEEE Transactions on Power Electronics, 2019, 34(1): 794-800. [15] 涂文聪, 骆光照, 刘卫国. 基于模糊动态代价函数的永磁同步电机有限控制集模型预测电流控制[J]. 电工技术学报, 2017, 32(16): 89-97. Tu Wencong, Luo Guangzhao, Liu Weiguo. Finite-control-set model predictive current control for permanent magnet synchronous motor based on dynamic cost function using fuzzy method[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 89-97. [16] 张晓光, 张亮, 侯本帅. 永磁同步电机优化模型预测转矩控制[J]. 中国电机工程学报, 2017, 37(16): 4800-4809.Zhang Xiaoguang, Zhang Liang, Hou Benshuai. Improved model predictive torque control of permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2017, 37(16): 4800-4809. [17] Wang Fengxiang, Xie Haotian, Chen Qing, et al.Parallel predictive torque control for induction machines without weighting factors[J]. IEEE Transactions on Power Electronics, 2020, 35(2): 1779-1788. [18] Sandre-Hernandez O, Morales-Caporal R, Rangel-Magdaleno J, et al.Parameter identification of PMSMs using experimental measurements and a PSO algorithm[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(8): 2146-2154. [19] Liu Zhaohua, Wei Hualiang, Li Xiaohua, et al.Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO[J]. IEEE Transactions on Power Electronics, 2018,33(12): 10858-10871. [20] Xu W, Ismail M M, Liu Yi, et al.Parameter optimization of adaptive flux-weakening strategy for permanent-magnet synchronous motor drives based on particle swarm algorithm[J]. IEEE Transactions on Power Electronics, 2019, 34(12): 12128-12140. [21] 刘细平, 胡卫平, 丁卫中, 等. 永磁同步电机多参数辨识方法研究[J]. 电工技术学报, 2020, 36(6): 1198-1207.Liu Xiping, Hu Weiping, Ding Weizhong, et al. Research on multi-parameter identification method of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 36(6): 1198-1207. [22] Jose Rodriguez, Patricio Cortes.功率变换器和电气传动的预测控制[M]. 陈一民, 周京华, 卫三民等译. 北京: 机械工业出版社, 2015.[23] 黄凯, 郭永芳, 李志刚. 基于信息反馈粒子群的高精度锂离子电池模型参数辨识[J]. 电工技术学报, 2019, 34(增刊1): 378-387. Huang Kai, Guo Yongfang, Li Zhigang. High precision parameter identification of lithium-ion battery model based on feedback particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 378-387. [24] Kennedy J.Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance[C]// Proceedings of the 1999 Congress on Evolutionary Computation-CEC99(99TH8406), Washington DC, USA, 1999: 1931-1938. [25] Liang J J, Suganthan P N.Dynamic multi-swarm particle swarm optimizer[C]// IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, 2005: 124-129. [26] 贾东立, 张家树, 张超. 基于混沌遗传算法的基元提取[J]. 西南交通大学学报, 2005, 40(4): 496-500. Jia Dongli, Zhang Jiashu, Zhang Chao. Geometric primetive extraction using chaos genetic algorithm[J]. Journal of Southwest Jiaotong University, 2005, 40(4): 496-500.