Influence of Air Pressure on Corona Discharge Ion Mobility of Nitrogen Based on Drift Tube Method
Liu Yunpeng1, Wu Zhenyang2, Zhu Lei3, Pei Shaotong1
1. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China; 2. State Grid Changchun Supply Company Changchun 130000 China; 3. State Grid Nanjing Supply Company Nanjing 210000 China
Abstract:The ion mobility in low gas pressure is a key parameter for corona discharge of power transmission line in high altitude area. Meanwhile, nitrogen as the main reaction gas in positive corona discharge, its existing value of the ion mobility takes no consideration of gas pressure. Actually, the measurements of ion mobility in different gas pressures have great significance to establish the ion current and corona loss calculation models. A needle-ring corona discharge experiment platform is designed and set up, which can simulate different gas pressures. What's more, the execution of the ion gate is improved from off-on-off to off-on, thus the waveforms with higher amplitudes of the ion could be gained. Thanks to the designed platform, the measured ion mobility of pure nitrogen under normal atmospheric condition is 1.113cm2V-1S-1. Besides, the positive nitrogen ion mobility at gas pressure of 101.19~44.52kPa is measured. The experimental results indicate that the ion mobility decreases nonlinearly with the increasing of gas pressure and has a certain trend of saturation. Finally, an index correction method is put forward.
刘云鹏, 吴振扬, 朱雷, 裴少通. 基于迁移管法气压对氮气正电晕放电离子迁移率的影响[J]. 电工技术学报, 2016, 31(22): 223-229.
Liu Yunpeng, Wu Zhenyang, Zhu Lei, Pei Shaotong. Influence of Air Pressure on Corona Discharge Ion Mobility of Nitrogen Based on Drift Tube Method. Transactions of China Electrotechnical Society, 2016, 31(22): 223-229.
[1] 刘云鹏, 朱雷, 律方成, 等. 特高压电晕笼直流分裂导线正极性电晕起始特性分析[J]. 电工技术学报, 2013, 28(1): 73-79. Liu Yunpeng, Zhu Lei, Lü Fangcheng, et al. Analysis of the positice corona onset characteristic of the bundle conductors in the UHV corona cage[J]. Transactions of China Electrotechnical Society, 2013, 28(1): 73-79. [2] Eiceman G A, Karpas Z. Ion mobility spectro- metry[M]. New York: Journal of the American Society for Mass Spectrometry, 1994. [3] Mason E A, McDaniel E W, Transport properties of ions in gases[M]. New York: John Wiley & Sons, 1987. [4] 徐学基, 诸定昌. 气体放电[M]. 上海: 复旦大学出版社, 1995. [5] Prestion J M, Rajadhyax L. Effect of ion molecule reactions on ion mobilities[J]. Analytical Chemistry, 1988, 60(1): 31-34. [6] Kanu A B, Dwivedi P, Tam M, et al. Ion mobility- mass spectrometry[J]. Journal of Mass Spectrometry, 2008, 43(1): 1-22. [7] Arce L, Menendez M, Garrido-Delgado R, et al. Sample-introduction systems coupled to ion-mobility spectrometry equipment for determining compounds present in gaseous, liquid and solid samples[J]. Trac Trends in Analytical Chemistry, 2008, 27(2): 139- 149. [8] 邵士勇, 蔺瑞峰, 侯可勇, 等. 离子迁移谱仪的研究进展[J]. 现代科学仪器, 2004, 12(4): 9-12. Shao Shiyong, Lin Ruifeng, Hou Keyong, et al. Development of the ion mobility spectrometers[J]. Modern Scientific Instruments, 2004, 12(4): 9-12. [9] 刘欣. 用于离子迁移色谱仪的负电晕放电电子源的研究[D]. 武汉: 华中科技大学, 2012. [10] 时迎国, 姚琏, 李安林, 等. 离子门参数对真空紫外光电离-大气压离子迁移谱仪性能的影响[J]. 质谱学报, 2007, 28(1): 1-4. Shi Yingguo, Yao Lian, Li Anlin, et al. The parameters of ion gate on the performance of a VUV ionization-atmospheric pressure ion mobility spectro- meter[J]. Journal of Chinese Mass Spectrometry Society, 2007, 28(1): 1-4. [11] 檀景辉. 基于脉冲正电晕放电离子源的离子迁移谱仪研究[D]. 天津: 天津大学, 2010. [12] Kim S H, Betty K R, Karasek F W. Mobility behavior and composition of hydrated positive reactant ions in plasma chromatography with nitrogen carrier gas[J]. Analytical Chemistry, 1978, 50(14): 2006-2016. [13] 刘升, 黄超群, 沈成银. 非对称离子门控制方法和对离子迁移谱分辨率的改善[J]. 光谱学与光盘分析, 2013, 33(11): 2881-2885. Liu Sheng, Huang Chaoqun, Shen Chengyin. Asymmetric control method for ion shutter and the resolution improvement of ion mobility spectrum[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 2881-2885. [14] Eiceman G A, Nazarov E G, Rodriguez J E. Analysis of a drift tube at ambient pressure: models and precise measurements in ion mobility spectrometry[J]. Review of Scientific Instruments, 2001, 72(9): 3610- 3621. [15] 欧阳吉庭, 张子亮, 彭祖林, 等. 空气针尖负电晕放电的特征辐射谱[J]. 高电压技术, 2012, 38(9): 2237-2241. Ouyang Jiting, Zhang Ziliang, Peng Zulin, et al. Electromagnetic radiation from negative corona discharge in air[J]. High Voltage Engineering, 2012, 38(9): 2237-2241. [16] 王艳辉, 王德真. 介质阻挡均匀大气压氮气放电特性研究[J]. 物理学报, 2006, 55(11): 5923-5930. Wang Yanhui, Wang Dezhen. Characteristics of dielectric barrier homogenous discharge atmospheric pressure in nitrogen[J]. Acta Physica Sinica, 2006, 55(11): 5923-5930. [17] 袁海燕, 傅正财. 基于有限元法的±800kV特高压直流输电线路离子流场计算[J]. 电工技术学报, 2010, 25(2): 139-146. Yuan Haiyan, Fu Zhengcai. Corona ionized field analysis of ±800kV HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 139-146. [18] 汪沨, 李锰, 潘雄峰, 等. 基于FEM-FCT算法的SF 6 /N 2 混合气体中棒-板间隙电晕放电特性的仿真研究[J]. 电工技术学报, 2013, 28(9): 261-267. Wang Feng, Li Meng, Pan Xiongfeng, et al. Corona discharge simulations of rod-plate gap in SF 6 /N 2 gas mixtures using FEM-FCT method[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 261-267. [19] 范欣然. 用于离子迁移率谱仪的瞬态漂移电场研究[D]. 北京: 中国科学院, 2007. [20] 胡树植. 离子迁移率谱仪(IMS)及其应用[J]. 核电子学与探测技术, 1998, 18(1): 5-11. Hu Shuzhi. Ion mobility spectrometry and its appli- cation[J]. Nuclear Electronics and Detection Tech- nology, 1998, 18(1): 5-11. [21] Tabrizchi M, Rouholahnejad F. Corona discharge ion mobility spectrometry at reduced pressures[J]. Review of Scientific Instruments, 2004, 75(11): 4656-4661.