Abstract:Detection of multiple gases(hydrogen, carbon monoxide, carbon dioxide, methane, acetylene, ethylene and ethane) with high accuracy and sensitivity is still the key of incipient transformer faults diagnosis based on dissolved gas analysis(DGA). In this paper, the Raman vibrational modes and Raman spectrum for dissolved gases in transformer oil were studied at the atomic level. The detecting platform for dissolved gases based on surface-enhanced Raman spectroscopy was built up, achieving Raman spectra for single gas of H2, CO, CO2, CH4, C2H2, C2H4 and C2H6 and the simultaneous detection of seven kinds of dissolved gases. Through Allan variance analysis, the optimum average times of Raman detection, increasing the detection limits by factor of about 12.8. Quantitative analysis based on ratio of gas characteristic spectral area was elaborated, achieving the detection accuracy of 96% for fault diagnosis of oil samples from transformers in the field.
陈伟根, 万福, 顾朝亮, 邹经鑫, 漆薇, 王品一. 变压器油中溶解气体拉曼剖析及定量检测优化研究[J]. 电工技术学报, 2016, 31(2): 236-243.
Chen Weigen, Wan Fu, Gu Zhaoliang, Zou Jingxin, Qi Wei, Wang Pinyi. The Research for Raman Analysis of Dissolved Gases in Transformer Oil and Optimization of Quantitative Detection. Transactions of China Electrotechnical Society, 2016, 31(2): 236-243.
[1] Mineral Oil-Impregnated Electrical Equipment in Service. Guide to the interpretation of dissolved and free gases analysis. IEC Std. 60599[S]. [2] Wan Fu, Chen Weigen, Gu Zhaoliang, et al. The measurement of trace C 2 H 6 based on cavity-enhanced absorption spectroscopy [J]. Spectroscopy and Spectral Analysis, 2015, 35(10): 2792-2796. [3] Chen Weigen, Pan Chong, Yun Yuxin, et al. Wavelet networks in power transformers diagnosis using dissolved gas analysis[J]. IEEE Transactions on Power Delivery, 2009, 24(1): 187-194. [4] 孔英会, 苑津莎, 李新叶, 等. 基于时序特征和参数估计的变压器故障诊断方法[J]. 电工技术学报, 2008, 23(12): 48-54. Kong Yinghui, Yuan Jinsha, Li Xinye, et al. A fault diagnosis method for power transformer based on temporal characteristics and parameter estimation[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 48-54. [5] Zylka P. Electrochemical gas sensors can supplement chromatography-based DGA[J]. Electrical Engineering, 2004, 87(3): 137-142. [6] Arakelian V G. The long way to the automatic chro- matographic analysis of gases[J]. IEEE Electrical Insulation Magazine, 2004, 20(6): 8-25. [7] Wan Fu, Chen Weigen, Wang Caisheng, et al. Using a sensitive optical system to analyze gases dissolved in samples extracted from transformer oil[J]. IEEE Electrical Insulation Magazine, 2014, 30(5): 15-22. [8] 陈伟根, 万福, 周渠, 等. 基于光声光谱检测的变压器油中溶解乙炔气体的压强特性[J]. 电工技术学报, 2015, 30(1): 112-119. Chen Weigen, Wan Fu, Zhou Qu, et al. Pressure characteristics of dissolved acetylene in transformer oil based on photoacoustic spectroscopy detection [J]. Transactions of China Electrotechnical Society, 2015, 30(1): 112-119. [9] Anderson A, Andrews B, Torrie B H. Raman and far infrared spectra of crystalline acetylene, C 2 H 2 and C 2 D 2 [J]. Journal of Raman Spectroscopy, 1985, 16(3): 202-207. [10] Bhattacharjee R. Distortion-induced intensity of Raman modes of molecular units in different crystal orientations [J]. Journal of Raman Spectroscopy, 1990, 21(2): 491- 494. [11] Ohara S, Yamaguchi S, Endo M. Performance characteristics of power build-up cavity for Raman spectroscopic measurement[J]. Optical Review, 2003, 10(5): 342-345. [12] Mank a J G, Belfadhel-Ayeb a, Krüsemann P V E, et al. In situ Raman analysis of gas formation in NiMH batteries[J]. Applied Spectroscopy, 2005, 59(1): 109- 114. [13] 刘龑, 黄尚廉, 黎学明, 等. 拉曼光谱测定变压器油中溶解气体的浓度[J]. 测试技术学报, 1997, 11(2): 1-3. Liu Yan, Huang Shanglian, Li Xueming, et al. Measu- ring the gases dissolved in transformer oil based on Raman spectra[J]. Journal of Test and Measurement Technique, 1997, 11(2): 1-3. [14] Stevens G C, Herman H, Baird P, et al. Insulation condition assessment through spectroscopic and che- mometrics analysis[C]//International Conference on Solid Dielectrics, Winchester, UK, 2007: 717-720. [15] Somekawa T, Kasaoka M, Kawachi F, et al. Analysis of dissolved C 2 H 2 in transformer oils using laser Raman spectroscopy[J]. Optics Letters, 2013, 38(7): 1086-1088. [16] 陈伟根, 赵立志, 彭尚怡, 等. 激光拉曼光谱应用于变压器油中溶解气体分析[J]. 中国电机工程学报, 2014, 34(15): 2485-2492. Chen Weigen, Zhao Lizhi, Peng Shangyi, et al. Analysis of dissolved gas in transformer oil based on laser raman spectroscopy[J]. Proceedings of the CSEE, 2014, 34(15): 2485-2492. [17] 变压器油中溶解气体在线监测装置选用导则. DLZ 249-2012[S]. [18] Barron L. Molecular light scattering and optical activity [M]. Cambridge:Cambridge University Press, 2004. [19] Atkins P. Physical chemistry[M]. Oxford:Oxford University Press, 2006. [20] Goncharov A, Crowhurst J. Raman spectroscopy of hot compressed hydrogen and nitrogen: implications for the intramolecular potential[J]. Physical Review Letters, 2006, 96(5): 055504 (1-4). [21] Subramanian N, Goncharov A F, Somayazulu M, et al. Raman spectroscopy of hydrogen confined under extreme conditions[J]. Journal of Physics: Conference Series, 2010, 215: 012057 (1-7). [22] Essenhigh K A. Energy transfer and chemistry of carbon monoxide in vibration mode non-eoulibrium [D]. Columbus:Department of Philosophy - The Ohio State University, 2005. [23] Pacansky J, Wahlgren U, Bagus P S. Ab initio SCF computation of force constants for CO 2 [J]. Theoretica Chimica Acta, 1976, 41: 301-309. [24] Dickinson RG, Dillon RT, Rasetti F. Raman spectra of polyatomic gases[J]. Physical Review B, 1929, 34(4): 0582-0589. [25] Allan M. Excitation of the four fundamental vibrations of CH 4 by electron impact near threshold[J]. Journal of Physics B, 2002, 35(2): 1-7. [26] Gondal M, Dastgeer a, Yamani Z H, et al. Investiga- tion of stimulated Raman scattering of ν1 and ν2 modes in CH 4 [J]. Chemical Physics Letters, 2003, 377, (1-2): 249-255. [27] Dopheide R, Zacharias H. Rotational alignment by stimulated Raman pumping: C 2 H 2 (ν‘2=1, J‘)[J]. The Journal of Chemical Physics, 1993, 99(6): 4864-4866. [28] Ling H, Sun J, Han Y X, et al. Laser-induced resonant excitation of ethylene molecules in C 2 H 4 /C 2 H 2 /O 2 reactions to enhance diamond deposition[J]. Journal of Applied Physics, 2009, 105(1): 014901 (1-5). [29] Aouididi H, Rotger M, Bermejo D, et al. Boudon. High-resolution stimulated Raman spectroscopy and analysis of the ν 1 /ν 5 (C-H) stretching dyad of C 2 H 4 [J]. Journal of Raman Spectroscopy, 2012(10): 178-186. [30] Howard J B. The normal vibrations and the vibrational spectrum of C 2 H 6 [J]. The Journal of Chemical Physics, 1937, 5(6): 442-450. [31] Li Jianfeng, Huang Yifan, Ding Yong, et al. Shell-isolated nanoparticle-enhanced Raman spectros- copy[J]. Nature, 2010, 464(7287): 392-395. [32] Buldakov M a, Korolkov V a, Matrosov I I, et al. Analyzing natural gas by spontaneous Raman scattering spectroscopy[J]. Journal of Optical Technology, 2013, 80(7): 426-430. [33] Chen Weigen, Wan Fu, Zou Jingxin, et al. Frequency locking and threshold current lowering effect of quantum cascade laser and an application in gas detection field[J]. Chinese Physics B, 2015, 30(1): 024206 (1-5). [34] Kiefer J, Seeger T, Steuer S, et al. Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant[J]. Measurement Science and Technology, 2008, 19(8): 085408(1-9). [35] Movasaghi, Zanyar Rehman, Shazza Rehman, et al. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42(5): 493-541. [36] 变压器油中溶解气体分析和判断导则. GB/T 7252—2001[S]. Guide to the ananlysis and the diagnosis of gases dissolved in transformer oil. GB/T 7252—2001[S].