Abstract:A magnetic bearing is a new support bearing, which can suspend a rotor in the space by magnetic forces without machinery contact between the rotor and the stator. So a magnetic bearing has a vast application prospect in the fields of aeronautics and astronautics, mechanical industry, life sciences and so on. In this paper, firstly, the application and development at home and abroad are reviewed. Then the definitions for magnetic bearings are summarized. Finally, the structure types (magnetic bearings with sensors and sensorless magnetic bearings) and modeling approaches on suspension forces (modeling methods based on magnetic bearings with sensors and sensorless magnetic bearings) are systemically expounded.
张维煜,朱熀秋,袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报, 2015, 30(12): 12-20.
Zhang Weiyuan,Zhu Huangqiu,Yuan Ye. Study on Key Technologies and Applications of Magnetic Bearings. Transactions of China Electrotechnical Society, 2015, 30(12): 12-20.
[1] Schweitzer G. Ein aktives magnetisches rotorlager- Auslegung und anwendung[J]. Regelungstechnik, 1978, 26(1-12): 10-15. [2] Knospe C R. Introductin to the special issue on magnetic bearing[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5): 481-485. [3] Brunet M. Practical applications of active magnetic bearing to the industrial world[C]. Proceedings of the 1st International Symposium on Magnetic Bearings, Zurich, Switzerland, 1988. [4] G. Schweiter. Applications of magnetic bearings[C]. In: Proceedings of the 1st International Symposium on Magnetic Bearings, Zurich, Switzerland, 1988: 225-244. [5] Taniguchi M. Cutting Performance of digital controlled milling AMB-spindle[C]. Proceedings of the 5th Interna- tional Symposium on Magnetic Bearings, Kanazawa, Japan, 1996: 375-380. [6] Hofmann W. Behaviour and control of an inverter-fed three-pole active radial magnetic bearing[C]. Procee- dings of the IEEE International Symposium on Industrial Electronics, Rio de Janeiro, Brazil, 2003: 974-979. [7] Schmidt E, Hofer M. Parameter evaluation of a hybrid magnetic bearing by using 3D finite element analyses [C]. Proceedings of the Australasian Universities Power Engineering Conference, Sydney, Australia, 2008: 1-6. [8] Kim S H, Shin J W, Ishiyama K. Magnetic bearings and synchronous magnetic axial coupling for the enhancement of the driving performance of magnetic wireless pumps[J]. IEEE Transactions on Magnetics, 2014, 50(1): 400-403. [9] 陈强. 基于 PCI 总线的磁悬浮轴承控制系统研究[D]. 南京: 南京航空航天大学, 2009. [10] 张祖明, 温诗铸. 关于直流控制或磁力轴承的控制 稳定性分析[C]. 第一届全国机械零件计算方法学术会议论文集, 1982. [11] 靳光华, 胡升魁, 张锦文. 主动磁悬浮轴承的原理及结构[M]. 上海: 上海微电机研究所, 1983. [12] 陈易新, 胡业发, 杨恒明, 等. 机床主轴可控磁力轴承的结构分析与设计[J]. 机床与液压, 1988, 3: 2-8. Chen Yixin, Hu Yefa, Yang Heming, et al. Structure analysis and design of magnetic bearings for machine tool spindle[J]. Machine Tool and Hydraulics, 1988, 3: 2-8. [13] 吴国庆, 张钢, 张建生, 等. 基于DSP的主动磁悬浮轴承电主轴控制系统研究[J]. 电机与控制学报, 2006, 10(2): 118-120. Wu Guoqing, Zhang Gang, Zhang Jiansheng, et al. Study of control system of motorized spindle supported with AMB based on DSP[J]. Electric Machines and Control, 2006, 10(2): 118-120. [14] 陈立志. 磁悬浮轴承在高速旋转机械上的应用及一种混合径向磁悬浮轴承的设计[J]. 光学精密工程, 1994, 2(4): 101-108. Chen Lizhi. Application and design of a hybrid radial magnetic bearing in high speed rotating machinery[J]. Optics and Precision Engineering, 1994, 2(4): 101-108. [15] 杨泉林. 磁悬浮实验列车模型的解耦控制系统[J]. 自动化学报, 1989, 15(1): 23-29. Yang Quanlin. The decoupled control system of the magnetic suspension test vehicle model[J]. Acta Auto- matica Sinica, 1989, 15(1): 23-29. [16] Nagaraj H S. Investigation of magnetic fields and forces arising in open-circuit-type magnetic bearing [J]. Tribology Transactions, 1986, 31(2): 192-201. [17] 高振金, 蔡怀昌, 陈文同. 磁悬浮轴承径向磁力的一种分析方法[J]. 吉林工学院学报, 1989, 10(4): 65-69. Gao Zhenjin, Cai Huaichang, Chen Wentong. An analytical method for calculating radial magnetic forces of magnetic bearing[J]. Changchun University of Technology(Natural Science Edition), 1989, 10(4): 65-69. [18] Hanson L. A commercial threshold for magnetic bearings[J]. World Pumps, 1994, 15: 456-459. [19] Studer P A. A Practical magnetic bearing[J]. IEEE Transactions on Magnetics, 1997, 13(5): 1155-1157. [20] Martin G, Kozák Š, Dúbravský J. Active magnetic bearing control in 3D model[C]. Proceedings of the 9th International Conference, Zilina, Slovakia, 2012: 281-285. [21] Davey K. New electromagnetic lift control method for magnetic levitation systems and magnetic bearings[J]. IEEE Transactions on Magnetics, 2004, 3(40): 1617- 1624. [22] Han Bangcheng, Zheng Shiqiang, Wang Xi, et al. Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application[J]. IEEE Transactions on Magnetics, 2012, 48(6): 1959-1966. [23] Pichot M A, Kajs J P, Murphy B R, et al. Active magnetic bearings for energy storage systems for combat vehicles[J]. IEEE Transactions on Magnetics, 2001, 37(1): 318-323. [24] Hamler A, Gorican V, Štumberger B, et al. Passive magnetic bearing[J]. Journal of Magnetism and Magnetic Materials, 2004, 272: 2379-2380. [25] Lee C W, Jeong H S. Dynamic modeling and optimal control of cone-shaped active magnetic bearing systems [J]. Control Engineering Practice, 1996, 4(10): 1393- 1403. [26] Ma K B, McMichael C K, Lamb M A, et al. Applica- tion of high temperature superconductors on levitation bearings, torque transmissions and vibration dampers [C]. IEEE Transactions on Application Supercond, 1993, 3: 388-391. [27] Kumar S, Cho D. Electric levitation bearings for micromotors[C]. Proceedings of 1991 International Conference on Solid-State Sensors and Actuators, 1991, 882-885. [28] Ma K B, Chen Q Y, Postrekhin E, et al. High tem- perature superconductor levitation bearings for space application[J]. Physica C: Superconductivity and Its Applications, 2000, 341: 2517-2520. [29] Impinna F, Detoni J G, Amati N, et al. Passive magnetic levitation of rotors on axial electrodynamic bearings[J]. IEEE Transactions on Magnetics, 2013, 1(49): 599-608. [30] Detoni J G, Impinna F, Tonoli A, et al. Unified modelling of passive homopolar and heteropolar electrodynamic bearings[J]. Jounal of Sound and Vibration, 2012, 331(19): 4219-4232. [31] Kant M, Barral J. General study of electromagnetic bearings[J]. IEEE Transactions on Magnetics, 1975, 11(5): 1151-1153. [32] Nicolsky R, Pereira A S, De Andrade Jr R, et al. Development of hybrid bearing system with thrust superconducting magnetic bearing and radial active electromagnetic bearing[J]. Physica C: Supercon- ductivity and its Applications, 2000, 341: 2509-2512. [33] Fan Y H, Lee A C, Hsiao F Z. Design of a permanent/ electromagnetic magnetic bearing-controlled rotor system[J]. Journal of the Franklin Institute, 1997, 334(3): 337-356. [34] Huang C M, Yen J Y. Servo design for a high stiffness linear repulsive magnetic-levitation bearing[C]. In: Proceedings of the American Control Conference, San Diego, USA, 1999, 1: 603-607. [35] Kumbernuss J, Jian C, Wang J H, et al. A novel magnetic levitated bearing system for vertical axis wind turbines(VAWT)[J]. Applied Energy, 2012, 90(1): 148-153. [36] 祁庆中, 赵雷, 江伟, 等. 非线性系统三维频域分析法及其在磁轴承中的应用[J]. 清华大学学报, 1998, 38(6): 5-7. Qi Qingzhong, Zhao Lei, Jiang Wei, et al. Three-D frequency domain analysis of nonlinear system and its application on magnetic bearings[J]. Journal of Tsinghua University(Science and Technology), 1998, 38(6): 5-7. [37] 曾学明. 磁轴承电控系统研究[D]. 南京: 南京航空航天大学, 2002. [38] 吴刚. 混合磁轴承飞轮系统设计与控制方法研究[D]. 长沙: 国防科技大学, 2006. [39] 田录林. 永磁轴承和导轨磁力解析模型的研究[D]. 西安: 西安理工大学, 2008. [40] 钟志贤, 祝长生. 主动磁轴承控制器对Jeffcott转子裂纹故障特征的影响[J]. 中国电机工程学报, 2012, 32(5): 105-110. Zhong Zhixian, Zhu Changsheng. Effects of Active magnetic bearing controller on fault characteristics of jeffcott cracked rotor[J]. Proceedings of the CSEE, 2012, 32(5): 105-110. [41] 金永德, 龙志强, 王宝权. 空间飞行器姿态控制用飞轮磁轴承的实验研究[C]. 中国航空学会全国第八届飞行力学与飞行试验学术会议论文集, 1990. [42] 高振金, 蔡怀昌, 陈文同, 等. 开路型磁轴承磁力理论分析[J]. 东北师范大学学报, 1990, 3: 47-81. Gao Zhenjin, Cai Huaichang, Chen Wentong, et al. Theoretical analysis of open-circuit-type magnetic bearings[J]. Journal of Northeast Normal University (Natural Science Edition), 1990, 3: 47-81. [43] 方之楚, Barrett L E. 带主动磁轴承单盘转子的坠落瞬态响应[J]. 上海交通大学学报, 1996, 30(7): 5-11. Fang Zhichu, Barrett L E. Transient response of single-disk rotor with active magnetic bearings during rotor drop[J]. Journal of Shanghai Jiaotong University, 1996, 30(7): 5-11. [44] 楼晓春, 吴国庆. 主动磁轴承系统的自适应滑模控制[J].电工技术学报, 2012, 27(1): 142-147. Lou Xiaochun, Wu guoqing. Adaptive sliding mode control for an active magnetic bearing system[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 142-147. [45] 韩辅君, 房建成. 一种永磁偏置磁轴承容错方法的试验研究[J]. 机械工程学报, 2010, 46(20): 34-40. Han Fujun, Fang Jiancheng. Research on fault- tolerant control for magnetic bearings biased by permanent magnetic[J]. Journal of Mechanical Enginee- ring, 2010, 46(20): 34-40. [46] 王曦, 房建成, 樊亚洪, 等. 轴向力偏转五自由度永磁偏置磁轴承及磁路解耦设计[J]. 中国电机工程学报, 2011, 31(17): 91-98. Wang Xi, Fang Jiancheng, Fan Yahong, et al. Axial force tilting permanent-magnet-biased magnetic bearing with five degrees of freedom and magnetic field decoupling design[J]. Proceedings of the CSEE, 2011, 31(17): 91-98. [47] 张维煜, 朱熀秋. 基于麦克斯韦张量法的交流磁轴承径向悬浮力建模[J]. 科学通报, 2012, 57(11): 976-986. Zhang Weiyu, Zhu Huangqiu. Influence of eddy effect to the parameter design and optimized design for magnetic bearing[J]. Electric Machines and Control,, 2012, 16(9): 67-77. [48] 张骅毅. 主动磁悬浮轴承的分析及优化[D]. 上海: 上海交通大学, 2010. [49] 章淑锳. 磁悬浮轴承柔性转子系统的H∞控制研究[D]. 南京: 南京航空航天大学, 2011. [50] 王军, 徐龙祥. 磁悬浮轴承开关功率放大器等效数学模型[J]. 电工技术学报, 2010, 25(4): 53-64. Wang Jun, Xu Longxiang. Equivalent mathematical models of switching power amplifier for magnetic bearing[J]. Transactions of China Electrotechnical Society, 2010, 25(4): 53-64. [51] 刘晓军. 基于磨削电主轴的磁悬浮轴承数控系统及试验研究[D]. 武汉: 武汉理工大学, 2003. [52] 李书鹏. 磁悬浮轴承系统的鲁棒H∞控制研究[D]. 南京: 南京航空航天大学, 2007. [53] 李德广, 刘淑琴.磁悬浮轴承数字控制的稳定性分析及预补偿算法[J].电工技术学报, 2011, 26(6): 108-112. Li Deguang, Liu Shuqin. Stability analysis of the AMB digital control system and its prediction com- pensatory algorithm[J]. Transactions of China Elec- trotechnical Society, 2011, 26(6): 108-112. [54] 张锦光. 磁悬浮转子系统建模技术及其虚拟样机研究[D]. 武汉: 武汉理工大学, 2010. [55] 张祖明, 温诗铸. 关于直流控制式磁力轴承的控制稳定性分析[J]. 机械设计, 1985, 4: 19-24. Zhang Zuming, Wen Shizhu. Analysis on the control stability of magnetic bearings[J]. Journal of Machine Design, 1985, 4: 19-24. [56] 丁国平. 磁力轴承电磁场理论分析和实验研究[D]. 武汉: 武汉理工大学, 2004. [57] 苏义鑫. 主动磁力轴承模糊控制的相关理论与技术研究[D]. 武汉: 华中科技大学, 2006. [58] 丁国平. 磁力轴承电磁场理论分析和实验研究[D]. 武汉: 武汉理工大学, 2008. [59] 蒋启龙.大功率电机磁浮轴承系统及其应用研究[D]. 成都: 西南交通大学, 2006. [60] 靳光华, 胡升魁, 张锦文.磁浮轴承[J]. 微特电机, 1982, 1: 26-27. Jin Guanghua, Hu Shengkui, Zhang Jinwen. Magnetic bearings[J]. Small & Special Electrical Machines, 1982, 1: 26-27. [61] 陈典正.机床用磁浮轴承新结构[J]. 机床, 1991, 6: 41-43. Chen Zhengdian. New structure of magnetic bearing for machine tool[J]. Manufacturing Technology & Machine Tool, 1991, 6: 41-43. [62] 熊清香, 宋子凯.磁浮轴承及其应用[J]. 湖北工学院学报, 1996, 11(2): 53-56. Xiong Qingxiang, Song Zikai. New structure of magnetic bearing for machine tool[J]. Magnetic bearing and its application, 1996, 11(2): 53-56. [63] 林继红, 王强.磁浮轴承在航空发动机上的应用研究[J]. 航空制造工程, 1998, 1: 10-11. Lin Jihong, Wang Qiang. Application research on magnetic bearings in aircraft engine[J]. Aviation Maintenance & Engineering, 1998, 1: 10-11. [64] 汪通悦, 陈辽军, 周峰, 等. 磁浮轴承的技术进展[J]. 机械制造, 2002, 40(7): 21-23. Wang Tongrui, Chen Liaojun, Zhou Feng, et al. Technical progress of magnetic bearing[J]. Machinery, 2002, 40(7): 21-23. [65] 谭凤顺, 金能强, 夏东, 等. 无源高温超导磁浮轴承磁悬浮力的计算[J]. 电工电能新技术, 2002, 21(1): 16-19. Tan Fengshun, Jin Nengqiang, Xia Dong, et al. Calculation of magnetic force of passive HTS magnetic bearings[J]. Advanced Technology of Electrical Engineering and Energy, 2002, 21(1): 16-19. [66] 曾励, 陈飞, 宋爱平, 等. 动力磁悬浮轴承的研究现状及关键技术[J]. 中国机械工程, 2001, 12(11): 1319-1323. Zeng Li, Chen Fei, Song Aiping, et al. The develop- ment and the key technology of the power magnetic bearing[J]. China Mechanical Engineering, 2001, 12(11): 1319-1323. [67] 李益民, 陈芳, 曾励. 动力磁悬浮轴承的特点及关键技术[J]. 现代机械, 2003, 1: 51-52. Li Yimin, Chen Fang, Zeng Li. The development and the key technology of the power magnetic bearing[J]. Modern Machinery, 2003, 1: 51-52. [68] 王磊. 动力磁悬浮轴承控制系统研究[D]. 大连: 大连交通大学, 2007. [69] 黄峰. 动力磁悬浮轴承径向位移自检测系统研究[D]. 大连: 大连交通大学, 2009. [70] Yonnet J P. Permanent magnet bearing and couplings [J]. IEEE Transactions on Magnetics, 1981, 17(1): 1169-1173. [71] Yonnet J P. Analytical calculation of magnetic bearings[C]. The 5th International Workshop on Rare Earth-Cobalt Permanent Magnets and Their App- lications, Roanoke, USA, 1981, 3: 199-216. [72] Dellinger S J, Smith A O, Stmat K J. Field and force calculations for use in passive magnetic bearing systems employing rare earth magnets[C]. The 8th International Workshop on Rare Earth-Cobalt Permanent Magnets And Their Applications, Dayton, USA, 1985, 6: 153-164. [73] 谭庆昌, 刘明洁, 孟慧琴, 等. 永磁向心轴承承载能力与刚度的计算[J]. 摩擦学学报, 1994, 14(4): 337-344. Tan Qingchang, Liu Mingjie, Meng Huiqin, et al. Study on bearing capacity and stiffness of radial magnetic bearing[J]. Tribology, 1994, 14(4): 337-344. [74] 修世超, 谭庆昌, 孟慧琴. 同轴环形磁铁磁作用力计算的等效磁荷法[J]. 沈阳黄金学院学报, 1995, 14(3): 359-363. Xiu Shichao, Tan Qingchang, Meng Huiqin. A method of equivalent magnetic charge for the calculation of the acting force of coaxial magnet rings[J]. Journal of Materials and Metallurgy, 1995, 14(3): 359-363. [75] Chang P Z, Moon F C. Levitation force and magnetic stiffness in bulk high-temperature superconductors[J]. Journal of Applied Physics, 1990, 67(9): 4358-4360. [76] Uesaka M. Experimental and numerical analysis of three-dimensional high-Tc superconducting levitation [J]. International Journal of Applied Electromagnetics and Materis, 1993, 4(3): 13-25. [77] Han Y H, Park B J, Jung S Y, et al. The improved damping of superconductor bearings for 35kWh super- conductor flywheel energy storage system[J]. Physica C: Superconductivity and its Applications, 2013, 485: 102-106. [78] 张维煜, 朱熀秋.涡流效应对磁悬浮轴承参数设计的影响及优化设计[J]. 电机与控制学报, 2012, 16(9): 67-77. ZhangWeiyu, Zhu Huangqiu. Influence of eddy effect to the parameter design and optimized design for magnetic bearing[J]. Electric Machines and Control,, 2012, 16(9): 67-77. [79] 曹广忠, 虞烈, 谢友柏.实心转子—电磁悬浮轴承系统的损耗分析[J]. 航空动力学报, 2003, 18(1): 124-129. Cao Guangzhong, Yu Lie, Xie Youbai. Rotating loss analysis for active magnetic bearing with solid rotating rotor[J]. Journal of Aerospace Power, 2003, 18(1): 124-129. [80] Sun Yanhua, Ho Y S, Yu Lie. Dynamic stiffnesses of active magnetic thrust bearing including eddy- current effects[J]. IEEE Transactions on Magnetics, 2009, 45(1): 139-149. [81] Tang Ming, Zhu Changsheng. New method of position estimation for self-sensing active magnetic bearings based on artificial neural network[C]. International Conference on Electrical and Control Engineering, Wuhan, China, 2010: 1355-1358. [82] Sadighi A, Kim W J. Adaptive-neuro-fuzzy-based sensorless control of a smart-material actuator[J]. Transactions on IEEE/ASME Mechatronics, 2011, 16(2): 371-379.