Abstract:Short-term wind speed probabilistic forecasting is quite significant for grid integration of large wind energy.By now the wind speed forecasting methods are mostly point predictions, whose results cannot describe the randomness of wind energy.A hybrid probabilistic forecasting method based on ensemble empirical mode decomposition (EEMD) and genetic algorithm-Gaussian process regression (GA-GPR) is proposed.Firstly, the EEMD is used to decompose the selected and normalized wind speed time series.Then, the GPR models of each component are established, in which the conjugate gradient algorithm is replaced by GA to optimize the hyper-parameters of covariance functions.Finally, the wind speed probabilistic forecasting results are obtained via superimposing the results of each component, which are compared with the quantile regression algorithm.The simulation results show that the proposed model can enhance the prediction precision, which can be served as a reference for similar engineering projects.
甘迪, 柯德平, 孙元章, 崔明建. 基于集合经验模式分解和遗传-高斯过程回归的短期风速概率预测[J]. 电工技术学报, 2015, 30(11): 138-147.
Gan Di, Ke Deping, Sun Yuanzhang, Cui Mingjian. Short-term Wind Speed Probabilistic Forecasting Based on EEMD and Coupling GA-GPR. Transactions of China Electrotechnical Society, 2015, 30(11): 138-147.
[1] 雷亚洲.与风电并网相关的研究课题[J].电力系统自动化, 2003, 27(8):84-89. Lei Yazhou.Studies on wind farm integration into power system[J].Automation of Electric Power Systems, 2003, 27(8):84-89. [2] 袁小明.大规模风电并网问题基本框架[J].电力科学与技术学报, 2012, 27(1):16-18. Yuan Xiaoming.The basic framework of large-scale wind power integration problems[J].Journal of Electric Power Science and Technology, 2012, 27(1):16-18. [3] Kariniotakis G, Waldl I H P, Marti I, et al.Next generation forecasting tools for the optimal management of wind generation[C].Probabilistic Methods Applied top ower Systems, Stockholm, Sweden, 2006:1-6. [4] Negnevitsky M, Potter C W.Innovative short-term wind generation prediction techniques[C].Power Engineering Society General Meeting, Montreal, Canada, 2006:60-65. [5] Alexiadis M C, Dokopoulos P S, Sahsamanoglou H S.Short term forecasting of wind speed and related electrical power[J].Solar Energy, 1998, 63(1):61-68. [6] 丁明, 张立军, 吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备, 2005, 25(8):32-34. Ding Ming, Zhang Lijun, Wu Yichun.Wind speed forecasting model based on time series analysis[J].Electric Power Automation Equipment, 2005, 25(8):32-34. [7] 武小梅, 白银明, 文福拴.基于RBF神经元网络的风电功率短期预测[J].电力系统保护与控制, 2011, 39(15):80-83. Wu Xiaomei, Bai Yinming, Wen Fushuan.Short-term wind power forecast based on the Radial Basis Function neural network[J].Power System Protection and Control, 2011, 39(15):80-83. [8] Kariniotakis G N, Stavrakakis G S, Nogaret E F.Wind power forecasting using advanced neural networks models[J].IEEE Transactions on Energy Conversion, 1996, 11(4):762-767. [9] 修春波, 任晓, 李艳晴, 等.基于卡尔曼滤波的风速序列短期预测方法[J].电工技术学报, 2014, 29(2):253-259. Xiu Chunbo, Ren Xiao, Li Yanqing, et al.Short-term prediction method of wind speed series based on Kalman filtering fusion[J].Transactions of China Electrotechnical Society, 2014, 29(2):253-259. [10]Bossanyi E A.Short-term wind speed using Kalman filters[J].Wind Engineering, 1985, 9(1):1-7. [11]罗文, 王莉娜.风场短期风速预测研究[J].电工技术学报, 2011, 26(7):68-74. Luo Wen, Wang Lina.Short-term wind speed forecasting for wind farm[J].Transactions of China Electrotechnical Society, 2011, 26(7):68-74. [12]孙斌, 姚海涛.基于PSO优化LSSVM的短期风速预测[J].电力系统保护与控制, 2012, 40(5):85-89. Sun Bin, Yao Haitao.The short-term wind speed forecast analysis based on the PSO-LSSVM predict model[J].Power System Protection and Control, 2012, 40(5):85-89. [13]王松岩, 于继来.风速与风电功率的联合条件概率预测方法[J].中国电机工程学报, 2011, 31(7):7-15. Wang Songyan, Yu Jilai.Joint conditions probability forecast method for wind speed and wind power[J].Proceedings of the CSEE, 2011, 31(7):7-15. [14]孙元章, 吴俊, 李国杰, 等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报, 2009, 29(4):41-47. Sun Yuanzhang, Wu Jun, Li Guojie, et al.Dynamic economic dispatch considering wind power penetration based on wind speed forecasting and stochastic programming[J].Proceedings of the CSEE, 2009, 29(4):41-47. [15]Barthelmie R J, Murray F, Pryor S C.The economic benefit of short-term forecasting for wind energy in the UK electricity market[J].Energy Policy, 2008, 36(5):1687-1696. [16]Sloughter J M, Gneiting T, Raftery A E.Probabilistic wind vector forecasting using ensembles and Bayesian model averaging[J].Monthly Weather Review, 2013, 141(6):2107-2119. [17]颜拥, 文福拴, 杨首晖, 等.考虑风电出力波动性的发电调度[J].电力系统自动化, 2010, 34(6):79-88. Yan Yong, Wen Fushuan, Yang Shouhui, et al.Generation scheduling with fluctuating wind power[J].Automation of Electric Power Systems, 2010, 34(6):79-88. [18]李智, 韩学山, 杨明, 等.基于分位点回归的风电功率波动区间分析[J].电力系统自动化, 2011, 35(3):83-87. Li Zhi, Han Xueshan, Yang Ming, et al.Wind power fluctuation interval analysis based on quantile regression[J].Automation of Electric Power Systems, 2011, 35(3):83-87. [19]Bremnes J B.Probabilistic wind power forecasts using local quantile regression[J].Wind Energy, 2004, 7(1):47-54. [20]Rasmussen C E, Williams C K I.Gaussian processes for machine learning[M].Massachusetts:The MIT Press, 2006. [21]Williams C K I.Prediction with Gaussian processes:From linear regression to linear prediction and beyond[R].Birmingham:Aston University, 1997. [22]孙斌, 姚海涛, 刘婷.基于高斯过程回归的短期风速预测[J].中国电机工程学报, 2012, 32(29):104-109. Sun Bin, Yao Haitao, Liu Ting.Short-term wind speed forecasting based on Gaussian process regression model[J].Proceedings of the CSEE, 2012, 32(29):104-109. [23]王贺, 胡志坚, 陈珍, 等.基于集合经验模态分解和小波神经网络的短期风功率组合预测[J].电工技术学报, 2013, 28(9):137-144. Wang He, Hu Zhijian, Chen Zhen, et al.A hybrid model for wind power forecasting based on ensemble empirical mode decomposition and wavelet neural networks[J].Transactions of China Electrotechnical Society, 2013, 28(9):137-144. [24]Guindon S, Gascuel O.A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood[J].Systematic Biology, 2003, 52(5):696-704. [25]Wu Zhaohua, Huang N E.A study of the characteristics of white noise using the empirical mode decomposition method[J].Process of the Royal Society of London Series A, 2003, 460(2046):1597-1611. [26]Wu Zhaohua, Huang N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 2009, 1(1):1-41. [27]Goldberg D E.Genetic algorithm in search, optimization and machine learning[M].New Jersey:Addison-Wesley, 1989. [28]杨世杰.动态测试数据中坏点处理的一种新方法——绝对均值法及应用研究[J].中国测试技术, 2006, 32(1):47-49, 82. Yang Shijie.A new method of removing singular points in dynamic testing data—absolute mean value method and its application study[J].China Measurement & Testing Technology, 2006, 32(1):47-49, 82. [29]Pinson P, Kariniotakis G.Conditional prediction intervals of wind power generation[J].IEEE Transactions on Power System, 2010, 25(4):1845-1856. [30]Sideratos G, Hatziargyriou N D.Probabilistic wind power forecasting using radial basis function neural networks[J].IEEE Transactions on Power System, 2012, 27(4):1788-1796. [31]Pinson P, Nielsen H, Moller J, et al.Nonparametric probabilistic forecasts of wind power:required properties and evaluation[J].Wind Energy, 2007, 10(6):497-516.