Abstract:Multi-coil systems are often used to achieve uniform magnetic field distribution, and the optimization of the size of the coil system determines the degree of uniformity of the magnetic field. Therefore, based on genetic algorithm, the mathematical model of the magnetic field generated by the Helmholtz type multi-coil system was constructed; Further analysis was carried out for the disadvantages of the uniformity of the magnetic field of the single feature point as a decision indicator and the advantages of multiple feature points as a decision indicator; Finally, the size of the three-coil and four-coil system was optimized, and the magnetic field distribution of two-coil, three-coil and four-coil system were compared. The analysis shows that the optimized four-coil Helmholtz system can generate a more uniform magnetic field than others, and the numerical simulation results are in good agreement with the theoretical derivation results. The conclusion presented in this paper is of great significance to the guidance for the optimal design of coupling mechanism in wireless power transfer technology.
何祥瑞, 荣灿灿, 刘明海. 基于无线电能传输系统多线圈结构参数优化设计[J]. 电工技术学报, 2021, 36(zk2): 404-411.
He Xiangrui, Rong Cancan, Liu Minghai. Optimization Design of Multi-Coil Structure Parameters Based on Wireless Power Transfer System. Transactions of China Electrotechnical Society, 2021, 36(zk2): 404-411.
[1] Kurs A, Karalis A, Moffatt R, et al.Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834): 83-86. [2] 贾金亮, 闫晓强. 磁耦合谐振式无线电能传输特性研究动态[J]. 电工技术学报, 2020, 35(20): 4217-4231. Jia Jinliang, Yan Xiaoqiang.Research tends of magnetic coupling resonant wireless power transfer characteristics[J]. Transactions of China Electro-technical Society, 2020, 35(20): 4217-4231. [3] 黄学良, 王维, 谭林林. 磁耦合谐振式无线电能传输技术研究动态与应用展望[J]. 电力系统自动化, 2017, 41(2): 2-14, 141. Huang Xueliang, Wang Wei, Tan Linlin.Technical progress and application development of magnetic coupling resonant wireless power transfer[J]. Auto-mation of Electric Power System, 2017, 41(2): 2-14, 141. [4] 程志远, 陈坤, 李东东, 等. 旋转式无线充电系统偏移特性研究[J]. 电工技术学报, 2021, 36(22): 4648-4657. Cheng Zhiyuan, Chen Kun, Li Dongdong, et al.Research on offset characteristics of rotary wireless charging system[J]. Transactions of China Electro-technical Society, 2021, 36(22): 4648-4657. [5] 赵禹, 杨仕友. 无线电能传输系统的频率跟踪技术与控制方法[J]. 电机与控制学报, 2020, 24(9): 22-29. Zhao Yu, Yang Shiyou.Frequency tracking and controlling of wireless power transfer system[J]. Electric Machines and Control, 2020, 24(9): 22-29. [6] 罗成鑫, 丘东元, 张波, 等. 多负载无线电能传输系统[J]. 电工技术学报, 2020, 35(12): 2499-2516. Luo Chengxin, Qiu Dongyuan, Zhang Bo, et al.Wireless power transfer system for multiple loads[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2499-2516. [7] 马秀娟, 武帅, 蔡春伟, 等. 应用于无人机的无线充电技术研究[J]. 电机与控制学报, 2019, 23(8): 1-9. Ma Xiujuan, Wu Shuai, Cai Chunwei, et al.Research on wireless charging technology applied to UAVs[J]. Electric Machines and Control, 2019, 23(8): 1-9. [8] 吴丽君, 李冠西, 张朱浩伯, 等. 一种具有恒流恒压输出自切换特性的电动汽车无线电能传输系统拓扑[J]. 电工技术学报, 2020, 35(18): 3781-3790. Wu Lijun, Li Guanxi, Zhang Zhuhaobo, et al.A wireless power transfer system topology with automatic switching characteristics of constant current and constant voltage output for electric vehicle charging[J]. Transactions of China Electro-technical Society, 2020, 35(18): 3781-3790. [9] Germano P, Perriard Y.Battery charger for electric vehicles based on a wireless power transmission[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(1): 66-71. [10] Park C, Lee S, Cho G H, et al.Two-dimensional inductive power transfer system for mobile robots using evenly displaced multiple pickups[J]. IEEE Transactions on Industry Applications, 2012, 50(1): 558-565. [11] Zhang Zhen, Pang Hongliang, Georgiadis A, et al.Wireless power transfer-an overview[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1044-1058. [12] Jia Zhiwei, Yan Guozheng, Liu Hua, et al.The optimization of wireless power transmission: design and realization[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2012, 8(3): 337-347. [13] 宋时间. 基于三维可变磁场微机器人磁驱动控制技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [14] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electro-magnetic compatibility of wireless power trans-mission system[J]. Transactions of China Electro-technical Society, 2020, 35(13): 2855-2869. [15] 刘坤, 张松勇, 顾伟, 等. 方形亥姆霍兹线圈磁场系统均匀性分析[J]. 现代电子技术, 2012, 35(7): 190-194. Liu Kun, Zhang Songyong, Gu Wei, et al.Analysis on magnetic field homogeneity of magnetic system based on square Helmholtz coils[J]. Modern Electro-nics Technique, 2012, 35(7): 190-194. [16] Basar M R, Ahmad M Y, Cho J, et al.Stable and high-efficiency wireless power transfer system for robotic capsule using a modified Helmholtz coil[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1113-1122. [17] Basar M R, Ahmad M, Cho J, et al.An improved wearable resonant wireless power transfer system for biomedical capsule endoscope[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 7772-7781. [18] 黄兆梁. Helmholtz线圈与共轴三线圈磁场均匀性分析[J]. 常州工学院学报, 2014, 27(6): 23-28. Huang Zhaoliang.An analysis of the homogeneity of the magnetic field in Helmholtz coil and three coaxial coils[J]. Journal of Changzhou Institute of Tech-nology, 2014, 27(6): 23-28. [19] 姜磊, 王钰, 熊又星. 基于矩形亥姆霍兹线圈的大均匀区改进型三维磁场发生器设计与特性[J]. 磁性材料及器件, 2016, 47(5): 45-50. Jiang Lei, Wang Yu, Xiong Youxing.Design and characteristics of an improved 3D magnetic field generator with larger uniform region based on rectangular Helmholtz coil[J]. Journal of Magnetic Materials and Devices, 2016, 47(5): 45-50. [20] 柯全. 微型肠道机器人诊查系统及其无线能量传输技术[D]. 上海: 上海交通大学, 2017. [21] 范志宇. 医用无线内镜供能系统研究与实现[D]. 沈阳: 东北大学, 2013. [22] Basar M R, Ahmad M Y, Cho J, et al.An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy[J]. Sensors and Actuators A: Physical, 2016, 249: 207-216. [23] Good R H.Elliptic integrals, the forgotten fun-ctions[J]. European Journal of Physics, 2001, 22(2): 119-216.