Abstract:In recent years, the research of wireless power transfer technology have been paid more attention by more and more electrical technology researchers while its application field have been continuously expanded. The coupling mechanism is an important part of the wireless power transfer, and its design and optimization have a direct influence on the transmission efficiency, transmission distance, power and misalignment tolerant of the system. In order to design the coupled magnetic mechanism, the current research status and hot issues from the three aspects of transmission coil, compensation network and electromagnetic shielding structure is briefly overviewed in this paper, and then the problems to be solved and the development tendency in the future are discussed, which providing a useful reference for other researchers.
李阳, 石少博, 刘雪莉, 马靖男, 黄悦蓬, 徐睿. 磁场耦合式无线电能传输耦合机构综述[J]. 电工技术学报, 2021, 36(zk2): 389-403.
Li Yang, Shi Shaobo, Liu Xueli, Ma Jingnan, Huang Yuepeng, Xu Rui. Overview of Magnetic Coupling Mechanism for Wireless Power Transfer. Transactions of China Electrotechnical Society, 2021, 36(zk2): 389-403.
[1] 夏晨阳, 陈国平, 任思源, 等. 采用新型负载恒流供电复合谐振网络的无线电能传输系统[J]. 电力系统自动化, 2017, 41(2): 46-52. Xia Chenyang, Chen Guoping, Ren Siyuan, et al.Wireless power transfer system using composite resonant network for constant-current power supply of load[J]. Automation of Electric Power Systems, 2017, 41(2): 46-52. [2] 杨庆新, 章鹏程, 祝丽花, 等. 无线电能传输技术的关键基础与技术瓶颈问题[J]. 电工技术学报, 2015, 30(5): 1-8. Yang Qingxin, Zhang Pengcheng, Zhu Lihua, et al.Key fundamental problems and technical bottlenecks of the wireless power transfer technology[J]. Transa-ctions of China Electrotechnical Society, 2015, 30(5): 1-8. [3] Manolatou C, Khan M J, Fan Shanhui, et al.Coupling of modes analysis of resonant channel add-drop filters[J]. IEEE Journal of Quantum Electronics, 1999, 35(9): 1322-1331. [4] 李阳, 杨庆新, 闫卓, 等. 磁耦合谐振式无线电能传输方向性分析与验证[J]. 电工技术学报, 2014, 29(2): 197-203. Li Yang, Yang Qingxin, Yan Zhuo, et al.Analysis and validation on characteristic of orientation in wireless power transfer system via coupled magnetic resonances[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 197-203. [5] Li Yang, Zhao Jingtai, Yang Qingxin, et al.A novel coil with high misalignment tolerance for wireless power transfer[J]. IEEE Transactions on Magnetics, 2019, 55(6): 1-4. [6] 李阳, 马靖男, 李明, 等. 无线电能传输磁耦合线圈的设计与优化[J]. 电器与能效管理技术, 2019(17): 56-62, 70. Li Yang, Ma Jingnan, Li Ming, et al.Design and optimization of magnetic coupling coil for wireless power transfer system[J]. Electrical and Energy Management Technology, 2019(17): 56-62, 70. [7] Elliott G, Boys J T, Green A.Magnetically coupled systems for power transfer to electric vehicles[C]//Proceedings of 1995 International Conference on Power Electronics and Drive System, Singapore, 1995: 797-801. [8] Guho Jung, Boyne Song, Seungyong Shin, et al.High efficient inductive power supply and pickup system for on-line electric bus[C]//IEEE 2012 International Electric Vehicle Conference, Greenville, SC, USA, 2012: 1-5. [9] Kissin M, Hao Hao, Covic G.A practical multiphase IPT system for AGV and roadway applications[C]//IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, 2010: 1844-1850. [10] 梁立科. 超级电容观光车无线充电系统仿真及性能优化[D]. 哈尔滨: 哈尔滨工业大学, 2015. [11] 肖朝霞, 上官旭东, 张献, 等. 基于风光互补独立直流微电网的电动汽车无线充电示范工程[J]. 供用电, 2018, 35(1): 8-13, 7. Xiao Zhaoxia, Shangguan Xudong, Zhang Xian, et al.A demonstration of wind/PV hybrid islanded DC microgrid for EVs wireless charging[J]. Distribution and Utilization, 2018, 35(1): 8-13, 7. [12] 吴理豪, 张波. 电动汽车静态无线充电技术研究综述(下篇)[J]. 电工技术学报, 2020, 35(8): 1662-1678. Wu Lihao, Zhang Bo.Overview of static wireless charging technology for electric vehicles: part Ⅱ[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1662-1678. [13] Budhia M, Covic G A, Boys J T.A new IPT magnetic coupler for electric vehicle charging systems[C]//36th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), Glendale, AZ, 2010: 2487-2492. [14] 戴欣, 李璐, 余细雨, 等. 基于正四面体的无线电能传输系统多自由度电能拾取机构[J]. 中国电机工程学报, 2016, 36(23): 6460-6467, 6612. Dai Xin, Li Lu, Yu Xiyu, et al.Multi-degree-of-freedom pick-up mechanism of wireless power transfer systems based on the regular tetrahedron[J]. Proceedings of the CSEE, 2016, 36(23): 6460-6467, 6612. [15] 张智敏, 张希, 张雨亭, 等. 电动汽车集成式无线充电线圈的设计和优化[J]. 电力电子技术, 2019, 53(2): 44-46. Zhang Zhimin, Zhang Xi, Zhang Yuting, et al.Design and optimization of integrated coils for electric vehicles wireless power transfer[J]. Power Electronics, 2019, 53(2): 44-46. [16] Takanashi H, Sato Y, Kaneko Y, et al.A large air gap 3kW wireless power transfer system for electric vehicles[C]//2012 IEEE Energy Conversion Congress and Exposition, Raleigh, North Carolina, USA, 2012: 269-274. [17] Budhia M, Boys J T, Covic G A, et al.Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328. [18] Zaheer A, Kacprzak D, Covic G A, et al.A bipolar receiver pad in a lumped IPT system for electric vehicle charging applications[C]//IEEE Energy Con-version Congress and Exposition (ECCE), Raleigh, NC, 2012: 283-290. [19] Moon S C, Kim B C, Cho S Y, et al.Analysis and design of a wireless power transfer system with an intermediate coil for high efficiency[J]. IEEE Transa-ctions on Industrial Electronics, 2013, 61(11): 5861-5870. [20] 胡超. 电动汽车无线供电电磁耦合机构能效特性及优化方法研究[D]. 重庆: 重庆大学, 2015. [21] Kim S, Covic G A, Boys J T.Tripolar pad for inductive power transfer systems for EV charging[J]. IEEE Transactions on Power Electronics, 2017, 32(7): 5045-5057. [22] 陈振伟. 电动汽车非接触充电系统用松耦合变压器设计与实现[D]. 哈尔滨: 哈尔滨工业大学, 2014. [23] 赵争鸣, 刘方, 陈凯楠. 电动汽车无线充电技术研究综述[J]. 电工技术学报, 2016, 31(20): 30-40. Zhao Zhengming, Liu Fang, Chen Kainan.New pro-gress of wireless charging technology for electric vehicles[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 30-40. [24] 宋文娟. 高温超导复合导体及超导线圈的交流损耗研究[D]. 北京: 北京交通大学, 2019. [25] 张国民. 高温超导带材及线圈的交流损耗[D]. 北京: 中国科学院研究生院(电工研究所), 2003. [26] 张国民, 余卉, 刘国乐, 等. 超导无线电能传输技术[J]. 南方电网技术, 2015, 9(12): 3-10. Zhang Guomin, Yu Hui, Liu Guole, et al.Super-conducting wireless power transfer technology[J]. Southern Power System Technology, 2015, 9(12): 3-10. [27] 姚辰, 马殿光, 唐厚君, 等. 超颖材料在无线电能传输中的应用方法[J]. 电工技术学报, 2015, 30(19): 110-119. Yao Chen, Ma Dianguang, Tang Houjun, et al.Application methods of metamaterials in wireless power transfer[J]. Transactions of China Electro-technical Society, 2015, 30(19): 110-119. [28] 张慧莹. 基于超材料的高效无线能量传输系统及其应用研究[D]. 西安: 西安电子科技大学, 2017. [29] 姚辰. 超材料在无线电能传输中应用的若干问题研究[D]. 上海: 上海交通大学, 2017. [30] Chen Junfeng, Tan Hui.Investigation of wireless power transfer with 3D metamaterial for efficiency enhancement[C]//2017 7th IEEE International Sympo-sium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE), Xi’an, China, 2017: 309-312. [31] Sampath J P K, Alphones A, Vilathgamuwa D M. Optimization of double spiral metamaterial for wire-less power transfer[C]//9th International Conference on Power Electronics/Energy Conversion Congress and Exposition Asia (ICPE-ECCE Asia), Seoul, South Korea, 2015: 1937-1943. [32] Alphones A, Sampath J P K. Metamaterial assisted wireless power transfer system[C]//2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 2015: 1-3. [33] 付振勇, 王春芳, 景馨, 等. 巡检机器人无线充电线圈偏移容忍力改善研究[J]. 广东电力, 2018, 31(11): 121-128. Fu Zhenyong, Wang Chunfang, Jing Xin, et al.Research on improvement of offset tolerance of wire-less charging coil for inspection robot[J]. Guangdong Electric Power, 2018, 31(11): 121-128. [34] Diekhans T, De Doncker R W. A dual-side con-trolled inductive power transfer system optimized for large coupling factor variations and partial load[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6320-6328. [35] 汪小娜, 邓其军, 刘姜涛. 电动汽车无线充电系统负载消失时保护问题研究[J]. 电器与能效管理技术, 2018(8): 1-7. Wang Xiaona, Deng Qijun, Liu Jiangtao.Research of the detect circuit and its protection strategy for EV wireless power charging system[J]. Electrical and Energy Management Technology, 2018(8): 1-7. [36] Jang J, Chen W Y, Kim H S, et al.A study on optimization of the wireless power transfer using the half-bridge fly back converter[C]//2010 2nd Inter-national Conference on Computer Research and Development, Kuala Lumpur, Malaysia, 2010: 717-719. [37] 胡宏晟, 蔡涛, 段善旭, 等. 用于WPT系统的一次侧失谐SS型补偿拓扑及其参数设计方法[J]. 电工技术学报, 2017, 32(18): 73-82. Hu Hongsheng, Cai Tao, Duan Shanxu, et al.Study of the primary side detuned series-series compensated topology and parameter design for WPT system[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 73-82. [38] 于鹏亮. 磁耦合谐振式无线电能传输相关技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. [39] 伍红霞, 陈希有. 电场耦合式无线电能传输恒压输出电路的研究[J]. 电力电子技术, 2015, 49(10): 13-15. Wu Hongxia, Chen Xiyou.Research on constant voltage output circuit of capacitively coupled power transfer[J]. Power Electronics, 2015, 49(10): 13-15. [40] 王泉. 无线电能传输系统恒流-恒压输出特性的研究[D]. 西安: 西安理工大学, 2019. [41] Villa J L, Sallan J, Osorio J F S, et al. High-misalignment tolerant compensation topology for ICPT systems[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 945-951. [42] 郭尧, 魏国, 宋凯, 等. 一种新型WPT二次侧谐振补偿拓扑[J]. 电工技术学报, 2015, 30(增刊1): 148-153. Guo Yao, Wei Guo, Song Kai, et al.A new compensate topology of secondary side for wireless power transfer[J]. Transactions of China Electro-technical Society, 2015, 30(S1): 148-153. [43] Zhao Jinbo, Cai Tao, Duan Shanxu, et al.A general design method of primary compensation network for dynamic WPT system maintaining stable trans-mission power[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8343-8358. [44] 赵锦波, 蔡涛, 段善旭, 等. 适用于分段式动态无线充电的T型抗偏移补偿拓扑[J]. 电工技术学报, 2017, 32(18): 36-43. Zhao Jinbo, Cai Tao, Duan Shanxu, et al.A T-type high misalignment tolerant compensated topology for sectional track-based dynamic wireless power transmission system[J]. Transactions of China Elec-trotechnical Society, 2017, 32(18): 36-43. [45] Lima G D, Godoy R B.Modeling and prototype of a dynamic wireless charging system using LSPS compensation topology[C]//14th Brazilian Power Electronics Conference (COBEP), Juiz de Fora, Brazil, 2017: 786-793. [46] 钟文琦, 付宇, 王荣. 双LCCL谐振网络补偿无人机无线充电系统[J]. 自动化与仪表, 2018, 33(7): 84-89. Zhong Wenqi, Fu Yu, Wang Rong.Double-sided LCCL resonant compensation network for UAV wireless power transfer system[J]. Automation and Instrumentation, 2018, 33(7): 84-89. [47] 马秀娟, 武帅, 蔡春伟, 等. 应用于无人机的无线充电技术研究[J]. 电机与控制学报, 2019, 23(8): 1-9. Ma Xiujuan, Wu Shuai, Cai Chunwei, et al.Research on wireless charging technology applied to UAVs[J]. Electric Machines and Control, 2019, 23(8): 1-9. [48] 苏玉刚, 谢诗云, 王智慧, 等. 基于F-F/T变结构谐振网络的恒压-恒流型电场耦合电能传输系统[J]. 电工技术学报, 2019, 34(6): 1127-1136. Su Yugang, Xie Shiyun, Wang Zhihui, et al.An electric-field coupled power transfer system with constant voltage and constant current output based on F-F/T changeable resonant circuit[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1127-1136. [49] 赵鱼名, 王智慧, 苏玉刚, 等. 基于T型CLC谐振网络的恒压型电场耦合电能传输系统负载自适应技术[J]. 电工技术学报, 2020, 35(1): 106-114. Zhao Yuming, Wang Zhihui, Su Yugang, et al.Load adaptive technology of constant voltage electric-field coupled power transfer system based on T-CLC resonant network[J]. Transactions of China Electro-technical Society, 2020, 35(1): 106-114. [50] Kan T Z, Lu Fei, Nguyen T D, et al.Integrated coil design for EV wireless charging systems using LCC compensation topology[J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9231-3241. [51] Park C, Lee S, Cho G H, et al.Two-dimensional inductive power transfer system for mobile robots using evenly displaced multiple pickups[J]. IEEE Transactions on Industrial Applications, 2014, 50(1): 558-565. [52] 陈庆彬, 叶逢春, 陈为. 无线电能传输系统补偿拓扑综述[J]. 电气开关, 2017, 55(5): 1-4, 9. Chen Qingbin, Ye Fengchun, Chen Wei, et al.Review of compensation network in wireless power transfer system[J]. Electric Switchgear, 2017, 55(5): 1-4, 9. [53] 吉莉, 王丽芳, 廖承林, 等. 基于LCL谐振补偿网络的副边自动切换充电模式无线电能传输系统研究与设计[J]. 电工技术学报, 2018, 33(增刊1): 38-44. Ji Li, Wang Lifang, Liao Chenglin, et al.Research and design of automatic alteration between constant current mode and constant voltage mode at the secondary side based on LCL compensation network in wireless power transfer systems[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 38-44. [54] 陆江华, 朱国荣, 黎文静, 等. 感应耦合能量传输系统中双边LCC谐振腔恒流和恒压模式的研究[J]. 中国电机工程学报, 2019, 39(9): 2768-2778. Lu Jianghua, Zhu Guorong, Li Wenjing, et al.Constant current and constant voltage outputs for double-sided LCC resonant tank in inductively coupled power transfer system[J]. Proceedings of the CSEE, 2019, 39(9): 2768-2778. [55] 马欣. 巡检机器人无线充电系统磁场分析与屏蔽技术研究[D]. 北京: 北京交通大学, 2019. [56] 张献, 章鹏程, 杨庆新, 等. 基于有限元方法的电动汽车无线充电耦合机构的磁屏蔽设计与分析[J]. 电工技术学报, 2016, 31(1): 71-79. Zhang Xian, Zhang Pengcheng, Yang Qingxin, et al.Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method[J]. Transactions of China Electro-technical Society, 2016, 31(1): 71-79. [57] 周丽波, 梁迪飞, 李维佳, 等. 无线充电用磁屏蔽材料[J]. 磁性材料及器件, 2019, 50(6): 57-63. Zhou Libo, Liang Difei, Li Weijia, et al.Magnetic shielding material for wireless charging[J]. Journal of Magnetic Materials and Devices, 2019, 50(6): 57-63. [58] 黄润鸿, 张波, 朱喆, 等. 无线电能传输技术电磁环境研究综述[J]. 南方电网技术, 2016, 10(11): 39-44. Huang Runhong, Zhang Bo, Zhu Zhe, et al.Overview of the research on electromagnetic environments of wireless power transfer technology[J]. Southern Power System Technology, 2016, 10(11): 39-44. [59] 张文彬, 张艳景, 肖琦, 等. 多种软磁合金及金属非晶材料的磁屏蔽性能研究[J]. 航天器环境工程, 2017, 34(5): 517-521. Zhang Wenbin, Zhang Yanjing, Xiao Qi, et al.Magnetic shielding performance of various soft magnetic alloys and metallic amorphous materials[J]. Spacecraft Environmental Engineering, 2017, 34(5): 517-521. [60] 田子建, 陈健, 樊京, 等. 基于磁负超材料的无线电能传输系统[J]. 电工技术学报, 2015, 30(12): 1-11. Tian Zijian, Chen Jian, Fan Jing, et al.The wireless power transfer system with magnetic metama-terials[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 1-11. [61] 房理想. 谐振式无线电能传输系统的耦合机构磁屏蔽研究[D]. 兰州: 兰州理工大学, 2019. [62] Mansano A, Bagga S, Serdijn W, et al.A high efficiency orthogonally switching passive charge pump rectifier for energy harvesters[J]. IEEE Transa-ctions on Circuits and System I Regular Papers, 2013, 60(7): 1959-1966. [63] Park H H, Kwon J H, Kwak S I, et al.Magnetic shielding analysis of a ferrite plate with a periodic metal strip[J]. IEEE Transactions on Magnetics, 2015, 51(8): 1-8. [64] 陈琛, 黄学良, 谭林林, 等. 电动汽车无线充电时的电磁环境及安全评估[J]. 电工技术学报, 2015, 30(19): 61-67. Chen Chen, Huang Xueliang, Tan Linlin, et al.Electromagnetic environment and security evaluation for wireless charging of electric vehicles[J]. Transa-ctions of China Electrotechnical Society, 2015, 30(19): 61-67. [65] 朱庆伟, 陈德清, 王丽芳, 等. 电动汽车无线充电系统磁场仿真与屏蔽技术研究[J]. 电工技术学报, 2015, 30(增刊1): 143-147. Chen Qingwei, Chen Deqing, Wang Lifang, et al.Study on the magnetic field and shielding technique for an electric vehicle oriented wireless charging system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 143-147. [66] 沈栋, 杜贵平, 丘东元, 等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869. Shen Dong, Du Guiping, Qiu Dongyuan, et al.Research status and development trend of electro-magnetic compatibility of wireless power trans-mission system[J]. Transactions of China Electro-technical Society, 2020, 35(13): 2855-2869. [67] Boys J T, Green A W.Inductively coupled power transmission: concept, design and application[J]. Transactions of the Institution of Professional Engineers, New Zealand: Electrical/Mechanical/ Chemical Engineering, 1995, 22(1): 1-9. [68] Wang C S, Stielau O H, Covic G A.Design con-siderations for a contactless electric vehicle battery charger[J]. IEEE Transactions on Industrial Elec-tronics, 2015, 52(5): 1308-1314. [69] Cruciani S, Campi T, Maradei F, et al.Active shielding design for wireless power transfer systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2019, 61(6): 1953-1960. [70] Massa A, Oliveri G, Viani F, et al.Array designs for long-distance wireless power transmission: state-of-the-art and innovative solutions[J]. Proceedings of the IEEE, 2013, 101(6): 1464-1481. [71] Zhou Jiali, Zhang Bo, Xiao Wenxun, et al.Nonlinear parity-time-symmetric model for constant efficiency wireless power transfer: application to a drone-in-flight wireless charging platform[J]. IEEE Transa-ctions on Industrial Electronics, 2018, 66(5): 4097-4107.