Brain Functional Network Based on Approximate Entropy of EEG under Magnetic Stimulation at Acupuncture Point
Guo Lei, Wang Yao, Yu Hongli, Yin Ning, Li Ying
Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin 300130 China
Abstract:Acupuncture is based on the theory of the traditional Chinese medicine. Its therapeutic effectiveness has been proved by clinical practice. However, its effect mechanism is still unclear. Magnetic stimulation at acupuncture point provides a new means for studying the theory of acupuncture. Based on the graph theory, the construction and analysis method of complex network can help to investigate the topology of brain functional network and understand the working mechanism of the brain. In this study, magnetic stimulation is used to stimulate neiguan(PC6) acupoint and EEG signal is recorded; using non-linear method(approximate entropy) and complex network theory, brain functional network based on EEG signal under magnetic stimulation at PC6 acupoint is constructed and analyzed; the features of complex network are comparatively analyzed between the quiescent and stimulated states. The experimental results show the topology of the network is changed, the connection of the network is enhanced, and the efficiency of information transmission is improved and the “small-world” property is stronger through stimulating PC6 acupoint.
郭磊, 王瑶, 于洪丽, 尹宁, 李颖. 基于近似熵的磁刺激穴位脑功络构建与分析[J]. 电工技术学报, 2015, 30(10): 31-38.
Guo Lei, Wang Yao, Yu Hongli, Yin Ning, Li Ying. Brain Functional Network Based on Approximate Entropy of EEG under Magnetic Stimulation at Acupuncture Point. Transactions of China Electrotechnical Society, 2015, 30(10): 31-38.
[1] 刘洪广, 周琳, 顾靖, 等. 中枢神经的无创性磁刺激技术及其应用[J]. 生物医学工程学杂志, 2001, 18(2): 290-295. Liu Hongguang, Zhou Lin, Gu Jing, et al. The technical method for noninvasive magnetic stimulation of nerve center and its clinical application[J]. Journal of Biomedical Engineering, 2001, 18(2): 290-295. [2] Chang S, Chang Z G, Li S J, et al. Effects of acupunc- ture at neiguan(PC6) on electroencephalogram[J]. The Chinese Journal of Physiology, 2009, 52(1): 1-7. [3] H L Yu, G Z Xu, Q Zhou, et al. EEG characteristics under magnetic stimulation at acupuncture point and at mock point[J]. IEEE Transactions on Magnetic, 2012, 48(11): 2857-2860. [4] 尹宁, 徐桂芝, 周茜. 磁刺激穴位复杂脑功能网络构建与分析[J]. 物理学报, 2013, 62(11): 118704. Yin Ning, Xu Guizhi, Zhou Qian. Construction and analysis of complex brain functional network under acupoint magnetic stimulation[J]. Acta Phys. Sin., 2013, 62(11): 118704. [5] Shalbaf R, Behnam H, Sleigh J, et al. Measuring the effects of sevoflurane on electroencephalogram using sample entropy[J]. Acta Anaesthesiologica Scan- dinavica, 2012, 56(7): 880-889. [6] Daneshyari M, Kamkar L L, Daneshyari M. Epileptic EEG: a comprehensive study of nonlinear behavior[J]. Advances in Computational Biology, 2010, 680: 677-683. [7] 梁夏, 王金辉, 贺永. 人脑连接组研究: 脑结构网络和脑功能网络[J]. 科学通报, 2010, 55(16): 1565- 1583. Liang Xia, Wang Jinhui, He Yong. Human connec- tome: Structural and functional brain networks[J]. Chinese Science Bull, 2010, 55(16): 1565-1583. [8] 孙俊峰, 洪祥飞, 童善保. 复杂脑网络研究进展——结构、功能、计算与应用[J]. 复杂系统与复杂性科学, 2010, 7(4): 74-87. Sun Junfeng, Hong Xiangfei, Tong Shanbao. A survey of complex brain networks: structure, function, com- putation, and applications[J]. Complex Systems and Complexity Science, 2010, 7(4): 74-87. [9] He Y, Chen Z J, Evans A C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI[J]. Cereb Cortex, 2007, 17(10): 2407-2419. [10] Supekar K, Menon V, Rubin D, et al. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease[J]. PLoS Computational Biology, 2008, 4(6): e1000100. [11] Britz J, Ville D V D, Michel C M. BOLD correlates of EEG topography reveal rapid resting-state network dynamics[J]. NeuroImage, 2010, 52(4): 1162-1170. [12] Chen A C N, Feng W J, Zhao H X, et al. EEG default mode network in the human brain: spectral regional field powers[J]. NeuroImage, 2008, 41(2): 561-574. [13] Yu H P, Yung H W, Sheng F L, et al. Fast com- putation of sample entropy and approximate entropy in biomedicine[J]. Computer Methods and Programs in Biomedicine, 2011, 104(3): 382-396. [14] 李营, 陈帅, 王丽. 基于近似熵和样本熵的思维脑电信号分析对比[J]. 重庆工商大学学报(自然科学版), 2013, 30(6): 44-47. Li Ying, Chen Shuai, Wang Li. Analysis and com- parison of mental EEG signal based on approximate entropy and sample entropy[J]. Journal of Chongqing Technology and Business (Natural Sciences Edition), 2013, 30(6): 44-47. [15] Watts D J, Strogatz S H. Collective dynamics of “small-world” networks[J]. Nature, 1998, 393(6684): 440-442. [16] Humphries M D, Gurney K, Prescott T J. The brainstem reticular formation is a small world, not scale-free, network[J]. Proceedings of the Royal Society B: Biological Sciences, 2006, 273(1585): 503-511. [17] 黄文涛, 冯又层. 静息态人脑功能网络的小世界特性[J]. 中南民族大学学报, 2011, 30(3): 57-60. Huang W T, Feng Y C. Small-world properties of resting state human brain functional networks[J]. Journal of South-Central University for Nationalities, 2011, 30(3): 57-60.