Numerical Simulation of Polymer Electrical Tree Growth Based on Inverse Power Law
Bian Haoran1, Yao Cheng2, Dong Shoulong2
1. Institute of Electronic Engineering China Academy of Engineering Physics Mianyang 621999 China 2. State Key Laboratory of Power Transmission Equipment Technology Chongqing University Chongqing 400044 China
Abstract:Polymer materials are widely used in power electronics and power transmission and distribution systems because of their excellent dielectric properties. However, under the long-term coupling effect of mechanical stress, thermal effect, electrical stress and other factors inside the insulation material, it is easy to cause the growth of electrical trees, which will cause internal damage and deterioration of the material, and eventually lead to the harm caused by penetrating discharge. The numerical simulation method can provide reference for improving the insulation reliability of the system. However, some key parameters of the existing model are difficult to obtain directly from the experiment, and can only be realized through the model verification to achieve the microscopic electrical tree simulation of specific materials, and can not achieve the engineering tasks from material parameter testing to complex structure electrical tree prediction. Therefore, this paper aims to propose a method of electrical tree limb simulation with simple model and parameters that can be obtained by experiment, so as to improve the engineering applicability of electrical tree limb simulation. The inverse power law is a phenomenological model directly based on the lifetime data of solid dielectric, which describes the physical process of the accumulation of electrical damage in solid dielectric to the generation of penetrating tree channels, and has the theoretical basis for describing the growth of electric treees. Therefore, this paper analyzes the physical relationship between the parameters of the inverse power model and the growth law of electrical trees, establishes the basic equation of local electrical damage based on the inverse power model, and establishes the electric tree simulation method based on the inverse power model combined with the electric field calculation and the material dispersion equation. Further, a sample of pin-plate electrode is used to demonstrate how to simulate the electrical tree by testing the basic parameters of the material. The experimental verification of the simulated results of electric treees is carried out, and the simulated growth law of electric treees is compared with the experimental growth law of electric treees. Finally, the difference between the proposed method and the phase-field simulation and WZ model is compared. The final results show that the method proposed in this paper can effectively simulate the electrical trees by using the experimental material parameters. The simulated electrical trees in this paper agree with the experimental results in terms of morphology and growth law. In this method, the shape of electrical trees is correlated with voltage tolerance index and cumulative damage standard deviation, and the growth rate of electrical trees is correlated with voltage tolerance index and cumulative damage mean. Compared with the phase-field simulation and WZ model, the proposed method can simulate the gradual growth of electrical trees, and the model parameters can be obtained experimentally.
边浩然, 姚成, 董守龙. 基于反幂定律的聚合物电树枝生长数值模拟[J]. 电工技术学报, 2025, 40(11): 3643-3652.
Bian Haoran, Yao Cheng, Dong Shoulong. Numerical Simulation of Polymer Electrical Tree Growth Based on Inverse Power Law. Transactions of China Electrotechnical Society, 2025, 40(11): 3643-3652.
[1] 杜伯学, 张莹, 孔晓晓, 等. 环氧树脂绝缘电树枝劣化研究进展[J]. 电工技术学报, 2022, 37(5): 1128-1135, 1157. Du Boxue, Zhang Ying, Kong Xiaoxiao, et al.Research progress on electrical tree in epoxy resin insulation[J]. Transactions of China Electrotechnical Society, 2022, 37(5): 1128-1135, 1157. [2] 李进, 赵仁勇, 陈允, 等. 水分含量影响玻璃纤维增强环氧树脂电树枝生长特性研究[J]. 电工技术学报, 2023, 38(5): 1166-1176, 1189. Li Jin, Zhao Renyong, Chen Yun, et al.Effects of moisture contents on electrical treeing process in glass fiber reinforced epoxy resin[J]. Transactions of China Electrotechnical Society, 2023, 38(5): 1166-1176, 1189. [3] 张雯嘉, 王伟, 袁浩, 等. 接枝聚丙烯电缆绝缘材料的电树枝特性及机理[J]. 电工技术学报, 2024, 39(1): 88-98. Zhang Wenjia, Wang Wei, Yuan Hao, et al.Electrical tree characteristics and mechanism of grafted polypropylene cable insulation[J]. Transactions of China Electrotechnical Society, 2024, 39(1): 88-98. [4] 陈向荣, 洪泽林, 朱光宇, 等. 高温下电压稳定剂对交联聚乙烯电树枝化及局部放电特性的影响[J]. 电工技术学报, 2023, 38(3): 577-586. Chen Xiangrong, Hong Zelin, Zhu Guangyu, et al.Effect of voltage stabilizer on electrical treeing and partial discharge characteristics of crosslinked polyethylene at high temperature[J]. Transactions of China Electrotechnical Society, 2023, 38(3): 577-586. [5] 巫松桢, 谢大荣, 陈寿田, 等. 电气绝缘材料科学与工程[M]. 西安: 西安交通大学出版社, 1996. [6] 李志坚, 张莹, 田猛, 等. 直流-温度复合场下环氧树脂内电树枝生长特性研究现状[J]. 绝缘材料, 2021, 54(3): 10-17. Li Zhijian, Zhang Ying, Tian Meng, et al.Research status of electrical tree growth characteristics in epoxy resin under DC-temperature compound field[J]. Insulating Materials, 2021, 54(3): 10-17. [7] Jiang Tie, Dai Chao, Hong Zelin, et al.DC electrical tree characteristics in epoxy resin at cryogenic temperature[C]//2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 2020: 1-4. [8] 杜伯学, 张苗苗, 姜恵兰, 等. 环氧树脂在低温环境下的电树枝生长特性[J]. 高电压技术, 2016, 42(2): 478-484. Du Boxue, Zhang Miaomiao, Jiang Huilan, et al.Growth characteristics of electrical tree in epoxy resin under low temperature[J]. High Voltage Engineering, 2016, 42(2): 478-484. [9] Du Boxue, Xue Jushao, Su Jingang, et al.Effects of ambient temperature on electrical tree in epoxy resin under repetitive pulse voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1527-1536. [10] Du Boxue, Zhang Miaomiao, Han Tao, et al.Effect of pulse frequency on tree characteristics in epoxy resin under low temperature[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(1): 104-112. [11] Du Boxue, Xue Jushao, Zhang Miaomiao.Effect of pulse duration on electrical tree and breakdown process of epoxy resin in LN2[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(1): 359-366. [12] 何东欣, 张涛, 陈晓光, 等. 脉冲电压下电力电子装备绝缘电荷特性研究综述[J]. 电工技术学报, 2021, 36(22): 4795-4808. He Dongxin, Zhang Tao, Chen Xiaoguang, et al.Research overview on charge characteristics of power electronic equipment insulation under the pulse voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4795-4808. [13] 黄路, 王鹏, 朱英伟, 等. 重复方波电压上升时间对交联聚乙烯电树特性影响研究[J]. 电工电能新技术, 2023, 42(5): 73-80. Huang Lu, Wang Peng, Zhu Yingwei, et al.Impact of rise time of repetitive square wave voltage on electrical tree characteristics in XLPE[J]. Advanced Technology of Electrical Engineering and Energy, 2023, 42(5): 73-80. [14] Niemeyer L, Pietronero L, Wiesmann H J.Fractal dimension of dielectric breakdown[J]. Physical Review Letters, 1984, 52(12): 1033-1036. [15] Wiesmann H J, Zeller H R.A fractal model of dielectric breakdown and prebreakdown in solid dielectrics[J]. Journal of Applied Physics, 1986, 60(5): 1770-1773. [16] 周远翔, 胡德雄, 张云霄, 等. 二维微米片复合材料取向调控电树枝生长特性的仿真研究[J]. 绝缘材料, 2022, 55(1): 24-31. Zhou Yuanxiang, Hu Dexiong, Zhang Yunxiao, et al.Simulation study on growth characteristics of electrical tree in two-dimensional microsheet composite by orientation regulating[J]. Insulating Materials, 2022, 55(1): 24-31. [17] 薛福明. 基于WZ模型的电树枝生长仿真分析[D].哈尔滨: 哈尔滨理工大学, 2012. Xue Fuming.Simulation analysis of electrical tree growth based on WZ model[D]. Harbin: Harbin University of Science and Technology, 2012. [18] Wang Wei, Li Changyun, Dong Jiahua, et al.Numerical simulation of electric trees based on fractal theory[C]//2021 IEEE 4th International Electrical and Energy Conference (CIEEC), Wuhan, China, 2021: 1-5. [19] 谷琛, 严萍, 张适昌. 嵌入屏障的绝缘介质中电树生长模型[J]. 高电压技术, 2006, 32(7): 6-9. Gu Chen, Yan Ping, Zhang Shichang.Electrical treeing model in dielectric with barriers[J]. High Voltage Engineering, 2006, 32(7): 6-9. [20] Chen Longqing.Phase-field models for microstructure evolution[J]. Annual Review of Materials Research, 2002, 32: 113-140. [21] Cahn J W, Hilliard J E.Free energy of a nonuniform system. I. interfacial free energy[J]. The Journal of Chemical Physics, 1958, 28(2): 258-267. [22] Allen S M, Cahn J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metallurgica, 1979, 27(6): 1085-1095. [23] Zhu Mingxiao, Li Jiacai, Song Henggao, et al.A phase field model for the propagation of electrical tree in nanocomposites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(2): 336-342. [24] Zhao Liang.A mathematical model for conductive electrical tree growth in dielectrics: part I: theory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(4): 1353-1360. [25] 张语桐, 吴泽华, 谢宗良, 等. 固体介质内绝缘损伤演化的相场模拟研究[J]. 中国电机工程学报, 2023, 43(17): 6885-6895. Zhang Yutong, Wu Zehua, Xie Zongliang, et al.Phase field simulation for internal insulation damage evolution in solid dielectric[J]. Proceedings of the CSEE, 2023, 43(17): 6885-6895. [26] 王雨帆. 温度梯度影响环氧树脂绝缘击穿特性及其相场模拟研究[D]. 天津: 天津大学, 2022. Wang Yufan.Insulation breakdown characteristics of epoxy resin under temperature gradient and its phase field simulation[D]. Tianjin: Tianjin University, 2022. [27] 边浩然. 考虑场强和空间电荷的XLPE电寿命指数模型研究[D]. 重庆: 重庆大学, 2021. Bian Haoran.Electrical life exponent model considering electric field and space charge effect[D]. Chongqing: Chongqing University, 2021. [28] Bian Haoran, Yang Lijun, Yao Renyun, et al.Method of selecting step stress test parameters for XLPE insulation DC voltage endurance coefficient[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(3): 746-753.