Analysis of Short-Circuit Forces and Deformation in Transformer Windings Based on Magnetic Field Gradient Stress Tensors
Yang Fan1, Gao Sance1, Zhao Yi2, Wang Jiawei3, Wang Pengbo1
1. State Key Laboratory of Power Transmission Equipment Technology Chongqing University Chongqing 400044 China; 2. Chongqing Academy of Metrology and Quality Inspection Chongqing 400044 China; 3. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China
Abstract:To address the challenges of high modeling complexity and insufficient computational efficiency in conventional methods for calculating electromagnetic forces in transformer windings under three-dimensional multiphysics coupling, this study proposes a novel analytical approach based on magnetic field gradient tensor theory. Through systematic analysis of multiple transformer short-circuit failure cases, it was identified that critical deformation zones in windings consistently occur at locations with maximal magnetic field gradient variations rather than at peak magnetic flux density regions. This observation highlights the intrinsic correlation between magnetic energy density gradients and mechanical strain localization. Building on this principle, a magnetic gradient stress tensor G is formulated to characterize electromagnetic-mechanical energy conversion, and the 3D electromagnetic force density distribution can be directly calculated using G. This framework establishes a mathematical equivalence between magnetic field gradients and force densities, circumventing the need for intricate current density reconstruction in traditional methods by leveraging second-order differential properties of magnetic gradient tensors, thereby transforming volumetric integrals into tensor differential operations. For validation, a 3D model of a 35 kV oil-immersed transformer was developed using magneto-mechanical fully coupled governing equations. Detailed simulations of magnetic fields, deformations, and electromagnetic forces under single-phase short-circuit conditions were performed via Ansys software suite, with preliminary results confirming theoretical predictions. A dedicated experimental platform was constructed, integrating eight Hall-effect magnetic sensors, eight fiber Bragg grating (FBG) stress sensors, and eight FBG strain sensors to synchronously capture magnetic fields, mechanical stresses, and deformations. Standard short-circuit tests demonstrated strong agreement between theoretical and experimental data: axial force exhibited a bimodal distribution along the circumferential direction, with a calculated peak of 188.1 kN showing a 1.8% deviation from the measured 191.5 kN, while the average error in radial forces remained at 2.4%. Cross-validation against conventional methods revealed an 43.9% reduction in computational time (from 9.8 h to 5.5 h) and a 53.8% decrease in memory consumption (from 292 GB to 135 GB) without compromising accuracy. This work establishes a direct theoretical linkage between electromagnetic and structural fields through tensor differential analysis, offering a new paradigm for multiphysics coupling studies in power equipment. The proposed algorithm has been validated via an in-house developed transformer short-circuit withstand design platform and further verified in simulations of critical devices such as ±800 kV converter transformers. These advancements significantly enhance the timeliness and reliability of short-circuit force predictions, providing a robust theoretical foundation for optimizing the mechanical stability and operational safety of large-scale power transformers under fault conditions.
杨帆, 高三策, 赵轶, 王嘉玮, 王鹏博. 基于磁场梯度张量的变压器绕组短路力及形变分析[J]. 电工技术学报, 2026, 41(1): 14-25.
Yang Fan, Gao Sance, Zhao Yi, Wang Jiawei, Wang Pengbo. Analysis of Short-Circuit Forces and Deformation in Transformer Windings Based on Magnetic Field Gradient Stress Tensors. Transactions of China Electrotechnical Society, 2026, 41(1): 14-25.
[1] 中国电力科学研究院有限公司. 变压器短路线圈损坏故障案例[R]. 北京: 国家电网有限公司, 2018. [2] Rommel D P, Di Maio D, Tinga T.Transformer hot spot temperature prediction based on basic operator information[J]. International Journal of Electrical Power & Energy Systems, 2021, 124: 106340. [3] 闫晨光, 张芃, 徐雅, 等. 换流变压器有载分接开关级间短路故障差动保护动作特性[J]. 电工技术学报, 2023, 38(21): 5878-5888, 5912. Yan Chenguang, Zhang Fan, Xu Ya, et al.Differential protection performance for converter transformer intertap short-circuit faults in on-load tap changers[J]. Transactions of China Electrotechnical Society, 2023, 38(21): 5878-5888, 5912. [4] Zheng Tao, Liu Xiaoxiao, Guo Xingchao.Analysis of fault-induced inrush current of converter transformer in LCC HVDC system considering DC control and protection[J]. International Journal of Electrical Power & Energy Systems, 2021, 125: 106536. [5] 靳铭凯, 郭鹏鸿, 陈维江, 等. 磁场-结构场双向耦合作用对变压器绕组轴向振动过程的影响[J]. 高电压技术, 2023, 49(8): 3296-3304. Jin Mingkai, Guo Penghong, Chen Weijiang, et al.Two- way magnetic-structural coupling effect on vibration process of power transformer windings[J]. High Voltage Engineering, 2023, 49(8): 3296-3304. [6] 刘云鹏, 周旭东, 王博闻, 等. 油浸变压器端部垫块脱落故障准稳态模式研究[J]. 高电压技术, 2022, 48(10): 3859-3870. Liu Yunpeng, Zhou Xudong, Wang Bowen, et al.Research on quasi-steady-state pattern of end block shedding in oil immersed transformer[J]. High Voltage Engineering, 2022, 48(10): 3859-3870. [7] 汪佐宪, 张书琦, 徐征宇, 等. 多因素条件下变压器自粘换位导线抗弯能力试验及评估[J]. 高电压技术, 2022, 48(9): 3660-3669. Wang Zuoxian, Zhang Shuqi, Xu Zhengyu, et al.research and evaluation of bending resistance of epoxy continuously transposed conductors in trans- formers under multi-factor conditions[J]. High Voltage Engineering, 2022, 48(9): 3660-3669. [8] Barros R M R, da Costa E G, Araujo J F, et al. Contribution of inrush current to mechanical failure of power transformers windings[J]. High Voltage, 2019, 4(4): 300-307. [9] 杜厚贤, 刘昊, 雷龙武, 等. 基于振动信号多特征值的电力变压器故障检测研究[J]. 电工技术学报, 2023, 38(1): 83-94. Du Houxian, Liu Hao, Lei Longwu, et al.Power transformer fault detection based on multi- eigenvalues of vibration signal[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 83-94. [10] Shan Yi, Ai Mengmeng, Liu Wenhui.Research on simulation calculation on short-circuit electrodynamics force of power transformer winding[J]. International Journal of Applied Electromagnetics and Mechanics, 2021, 65(3): 451-465. [11] 欧强, 罗隆福, 李勇, 等. 一种电力变压器短路累积机械损伤评价方法[J]. 电工技术学报, 2024, 39(8): 2578-2590. Ou Qiang, Luo Longfu, Li Yong, et al.An evaluation method for short-circuit cumulative mechanical damage of power transformer[J]. Transactions of China Electrotechnical Society, 2024, 39(8): 2578-2590. [12] Li Zhongxiang, Tan Yanghong, Li Yong, et al.Radial stability evaluation and cumulative test of transformer windings under short-circuit condition[J]. Electric Power Systems Research, 2023, 217: 109112. [13] Li Yi, Xu Qiuyuan, Lu Yanfeng.Electromagnetic force analysis of a power transformer under the short- circuit condition[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(8): 0603803. [14] Wang Shuhong, Zhang Haijun, Wang Song, et al.Cumulative deformation analysis for transformer winding under short-circuit fault using magnetic- structural coupling model[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 0606605. [15] 王谦, 任志刚, 滕景竹, 等. 基于变压器磁—路—力数字模型的永久性短路故障下重合闸配置研究[J/OL]. 高压电器, 2024: 1-8[2025-07-25]. http://kns.cnki. net/kcms/detail/61.1127.TM.20241011.1509.004.html. Wang Qian, Ren Zhigang, Teng Jingzhu, et al. Transformer magnetic field-circuit-force digital model during reclosing and configuration study[J/OL]. High Voltage Apparatus, 2024: 1-8[2025- 07-25]. http://kns.cnki.net/kcms/detail/61.1127.TM.20241011.1509.004.html. [16] 邓祥力, 朱宏业, 严康, 等. 基于光纤漏磁场测量的变压器磁平衡保护研究[J]. 电工技术学报, 2024, 39(3): 628-642. Deng Xiangli, Zhu Hongye, Yan Kang, et al.Magnetic balance protection of transformers based on optical fiber leakage magnetic field Measurement[J]. Transactions of China Electrotechnical Society, 2024, 39(03):628-642. [17] 朱占新, 谢德馨, 张艳丽. 大型电力变压器三维漏磁场与结构件损耗的时域分析[J]. 中国电机工程学报, 2012, 32(9): 156-160, 22. Zhu Zhanxin, Xie Dexin, Zhang Yanli.Time domain analysis of 3D leakage magnetic fields and structural part losses of large power transformers[J]. Proceedings of the CSEE, 2012, 32(9): 156-160, 22. [18] 郑玉平, 龚心怡, 潘书燕, 等. 变压器匝间短路故障工况下的漏磁特性分析[J]. 电力系统自动化, 2022, 46(15): 121-127. Zheng Yuping, Gong Xinyi, Pan Shuyan, et al.Analysis on leakage flux characteristics of turn-to- turn short-circuit fault for power transformer[J]. Automation of Electric Power Systems, 2022, 46(15): 121-127. [19] 邓永清, 阮江军, 董旭柱, 等. 基于自适应网格控制的10 kV油浸式变压器多物理场仿真计算[J]. 高电压技术, 2022, 48(8): 2924-2933. Deng Yongqing, Ruan Jiangjun, Dong Xuzhu, et al.Simulation of multi-physical field of 10 kV oil- immersed transformer based on adaptive grid control[J]. High Voltage Engineering, 2022, 48(8): 2924-2933. [20] Pile R, Devillers E, Le Besnerais J.Comparison of main magnetic force computation methods for noise and vibration assessment in electrical machines[J]. IEEE Transactions on Magnetics, 2018, 54(7): 8104013. [21] 律方成, 汪鑫宇, 王平, 等. 基于振动偏离及加权熵的多次短路冲击下变压器绕组机械形变辨识[J]. 电工技术学报, 2023, 38(11): 3022-3032. Lü Fangcheng, Wang Xinyu, Wang Ping, et al.Mechanical deformation identification of transformer winding under multiple short-circuit impacts based on vibration deviation and weighted entropy[J]. Trans- actions of China Electrotechnical Society, 2023, 38(11): 3022-3032. [22] 陈彬, 梁旭, 肖乔莎, 等. 绕组布置方式对高频变压器漏磁场和电磁力的影响分析[J]. 高压电器, 2022, 58(2): 95-102. Chen Bin, Liang Xu, Xiao Qiaosha, et al.analysis on influence of winding layout on leakage magnetic field and electromagnetic force of high-frequency trans- former[J]. High Voltage Apparatus, 2022, 58(2): 95-102. [23] Gao Shuguo, Sun Lu, Tian Yuan, et al.Research on the distribution characteristics of transformer axial vibration under short-circuit conditions considering damping parameters[J]. Applied Sciences, 2022, 12(17): 8443. [24] 师愉航, 汲胜昌, 张凡, 等. 变压器绕组多倍频振动机理及特性[J]. 高电压技术, 2021, 47(7): 2536-2544. Shi Yuhang, Ji Shengchang, Zhang Fan, et al.Multi- frequency vibration mechanism and characteristics of transformer windings[J]. High Voltage Engineering, 2021, 47(7): 2536-2544. [25] 张凡, 李秀广, 朱筱瑜, 等. 计及热老化程度的变压器绕组内线圈短路承受能力评估方法[J]. 中国电机工程学报, 2022, 42(10): 3836-3846. Zhang Fan, Li Xiuguang, Zhu Xiaoyu, et al.Assessment of the withstand ability to short circuit of inner windings in power transformers considering the degree of thermal aging[J]. Proceedings ofthe CSEE, 2022, 42(10):3836-3846. [26] 曹辰, 徐博文, 李辉. 基于振动与电抗信息的变压器绕组形变状态综合监测方法[J]. 高电压技术, 2022, 48(4): 1518-1530. Cao Chen, Xu Bowen, Li Hui.Composite monitoring method for the state of transformer winding deforma- tion based on vibration and reactance information[J]. High Voltage Engineering, 2022, 48(4): 1518-1530. [27] 李金忠, 张书琦, 程涣超, 等. 特高压换流变压器绕组动稳定能力分析[J]. 中国电机工程学报, 2023, 43(8): 3237-3248. Li Jinzhong, Zhang Shuqi, Cheng Huanchao, et al.Dynamic stability analysis of UHV converter trans- former winding[J]. Proceedings of the CSEE, 2023, 43(8): 3237-3248. [28] 阎秀恪. 开关磁阻电机性能的场—路—运动耦合分析[D]. 沈阳: 沈阳工业大学, 2005. Yan Xiuke.Field-circuit-motion coupled analysis for switched reluctance motor[D]. Shenyang: Shenyang University of Technology, 2005. [29] 王赞基, 唐起超, 刘秀成. 电力变压器内部短路故障对短路电抗的影响[J]. 中国电机工程学报, 2006, 26(21): 15-21. Wang Zanji, Tang Qichao, Liu Xiucheng.Effects of internal short circuit faults on short circuit reactance of power transformer[J]. Proceedings of the CSEE, 2006, 26(21): 15-21. [30] Linan R, Ponce D, Betancourt E, et al.Optimized models for overload monitoring of power transfor- mers in real time moisture migration model[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(6): 1977-1983. [31] 国家质量监督检验检疫总局, 国家标准化管理委员会. 电力变压器第5部分: 承受短路的能力: GB 1094.5—2008[S]. 北京: 中国标准出版社, 2008. [32] Huei-Huang Lee.Finite Element Simulations with ANSYS Workbench 2019[M]. Kansas: SDC Publica- tions, 2019. [33] Najafi A, Iskender I.Electromagnetic force investiga- tion on distribution transformer under unbalanced faults based on time stepping finite element methods[J]. International Journal of Electrical Power & Energy Systems, 2016, 76: 147-155.