1. School of Electrical Automation and Information Engineering Tianjin University Tianjin 300072 China; 2. Tianjin Aviation Electrical Appliance Company Limited Tianjin 300300 China; 3. School of Electrical and Control Engineering Liaoning Technical University Huludao 125105 China
Abstract:The traditional EE-structure phase-shifting transformer, due to its asymmetric design, leads to high levels of non-characteristic harmonics and total harmonic distortion in rectifiers. It is difficult to meet the requirements of more-electric aircraft/all-electric aircraft for aviation power systems, which demand compact size, lightweight, and high efficiency. Therefore, this research focuses on the yoke balance of phase-shifting transformers and investigates the yoke-balanced Y-structure phase-shifting transformer in conjunction with practical engineering challenges. The aim is to reduce the volume of phase-shifting transformers in aviation 12-pulse rectifiers and address the issues of non-characteristic harmonics and high total harmonic distortion caused by asymmetrical phase-shifting transformers in aviation rectifiers. Firstly, the principle of a 12-pulse autotransformer rectifier was analyzed, followed by the derivation of the turns ratio, analyze the mechanism of 12-pulse input current composition and derive the input current function of the rectifier. Secondly, analyze the magnetic flux paths of the traditional EE-structure and Y-structure phase-shifting transformers. By calculating the three-phase magnetic reluctances of both transformer structures, a scaled model of the phase-shifting transformer is established using finite element simulation software to verify the ohmic loss balance and three-phase yoke equilibrium characteristics of the Y-structure phase-shifting transformer. Thirdly, calculate the power of the phase-shifting transformer, the turns ratio of the phase-shifting transformer adopts the minimum angular phase shift design to ensure the symmetry of the transformer windings and the accuracy of the phase shift angle. Finally, experimental testing on the characteristics of a Y-structure phase-shifting transformer. The simulation and experimental results show that the Y-structured phase-shifting transformer exhibits balanced core ohmic losses and uniform magnetic flux density distribution. The input current phase difference of the rectifier bridge is 30°, and the phase difference between the line voltages of the two output voltage sets of the phase-shifting transformer is 30.14°. Under the same output power, the THD of the three-phase input currents for the rectifier based on the EE-structure phase-shifting transformer are 7.688 9%, 8.027 4%, and 7.879 4%, while those for the rectifier based on the Y-structure phase-shifting transformer are 6.553 8%, 6.799 9%, and 6.594 0%, Comparison of Two Rectifier Structures, with the Y-structured phase-shifting transformer, the THD of the three-phase input current decreased from 7.688 9% to 6.553 8%. The Y-structure phase-shifting transformer outperforms the EE-structure phase-shifting transformer in eliminating the 7th harmonic, input current with no non-characteristic harmonics present. The Y-structured phase-shifting transformer has a 13.6% reduction in volume and a 13.8% increase in power density compared to the EE-structured phase-shifting transformer. The following conclusions can be drawn from the simulation and experimental analysis: (1) The Y-structure phase-shifting transformer features equal magnetic circuit lengths in all three phases, balanced magnetic reluctance, uniform ohmic losses, and balanced three-phase yokes. (2) Compared to the EE-structure phase- shifting transformer, the Y-structure phase-shifting transformer features a flat profile, compact size, and low harmonic distortion. (3) The research based on the Y-structure phase-shifting transformer does not contain non-characteristic harmonics in its input current.
[1] 史艳博, 葛红娟, 胡寅逍, 等. 基于无源半桥辅助电路的24脉航空变压整流器[J]. 电工技术学报, 2022, 37(增刊1): 257-266. Shi Yanbo, Ge Hongjuan, Hu Yinxiao, et al.24-pulse aviation transformer rectifier based on passive half- bridge auxiliary circuit[J]. Transactions of China Electrotechnical Society, 2022, 37(S1): 257-266. [2] Meng Fangang, Xu Xiaona, Gao Lei, et al.Active harmonic reduction using DC-side current injection applied in a novel large current rectifier based on fork-connected autotransformer[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5250-5264. [3] 梁国壮, 于昕冉, 魏雨璇, 等. 制氢电源多脉波整流技术与谐波抑制优化[J/OL]. 电源学报, 1-10 [2025-05-14]. https://link.cnki.net/urlid/12.1420.TM. 20250514.1012.003. Liang Guozhuang, Yu Xinran, Wei Yuxuan, et al. Multi-Pulse Rectification Technology and Harmonic Suppression Optimization of Hydrogen Production Power Supply[J/OL]. Journal of Power Supply, 1-10 [2025-05-14]. https://link.cnki.net/urlid/12.1420.TM. 20250514.1012.003. [4] 姚绪梁, 李磊, 王景芳, 等. 一种直流侧带双辅助二极管的24脉波整流器[J]. 中国电机工程学报, 2022, 42(22): 8276-8288. Yao Xuliang, Li Lei, Wang Jingfang, et al.A 24-pulse rectifier with two auxiliary diodes at DC side[J]. Proceedings of the CSEE, 2022, 42(22): 8276-8288. [5] Meng Fangang, Xu Xiaona, Gao Lei, et al.Dual passive harmonic reduction at DC link of the double- star uncontrolled rectifier[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3303-3309. [6] 孟凡刚, 徐晓娜, 高蕾, 等. 双反星形不控整流器的直流侧双无源谐波抑制方法[J]. 电工技术学报, 2019, 34(8): 1689-1697. Meng Fangang, Xu Xiaona, Gao Lei, et al.Dual passive harmonic reduction at DC link of the double- star uncontrolled rectifier[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1689-1697. [7] 何黎鹏, 郭强, 肖蕙蕙, 等. 含负载前馈补偿的电流型PWM整流器改进无差拍控制[J]. 电工技术学报, 2024, 39(2): 501-513. He Lipeng, Guo Qiang, Xiao Huihui, et al.Improved deadbeat control of current-source PWM rectifiers with load feed-forward compensation[J]. Transactions of China Electrotechnical Society, 2024, 39(2): 501-513. [8] Meng Fangang, Gao Lei, Yang Shiyan, et al.Effect of phase-shift angle on a delta-connected auto-transformer applied to a 12-pulse rectifier[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 4678-4690. [9] 谢飞, 许建平, 郭夏, 等. 基于虚拟阻抗的三相Buck整流器输入不平衡控制策略[J]. 电工技术学报, 2024, 39(14): 4456-4466. Xie Fei, Xu Jianping, Guo Xia, et al.A control strategy based on virtual impedance for three-phase buck rectifier under unbalanced phase-voltages[J]. Transactions of China Electrotechnical Society, 2024, 39(14): 4456-4466. [10] Meng Fangang, Yang Wei, Yang Shiyan.Effect of voltage transformation ratio on the kilovoltampere rating of delta-connected autotransformer for 12-pulse rectifier system[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3579-3588. [11] 孟凡刚, 姜彤, 郭依宁. 基于电力电子变压器的串联型12脉波整流器[J]. 电机与控制学报, 2021, 25(5): 52-59. Meng Fangang, Jiang Tong, Guo Yining.Series- connected 12-pulse rectifier based on power electronic transformer[J]. Electric Machines and Control, 2021, 25(5): 52-59. [12] 史晓阳. 航空用高功率因数可控升压整流器仿真研究[J]. 电气技术, 2019, 20(4): 12-15, 20. Shi Xiaoyang.High power factor controlled step-up rectifer for aviation[J]. Electrical Engineering, 2019, 20(4): 12-15, 20. [13] 赵镜红, 周长朵, 王涵铭, 等. 计及边端效应的直线式移相变压器等效电路分析[J]. 电工技术学报, 2024, 39(6): 1792-1805. Zhao Jinghong, Zhou Changduo, Wang Hanming, et al.Equivalent circuit analysis of linear phase-shifting transformer considering end effect[J]. Transactions of China Electrotechnical Society, 2024, 39(6): 1792-1805. [14] 王景芳, 赵晨, 姚绪梁, 等. 一种基于改进双二极管脉波倍增电路的串联型24脉波整流器[J]. 中国电机工程学报, 2024, 44(12): 4878-4891. Wang Jingfang, Zhao Chen, Yao Xuliang, et al.A series-connected 24-pulse rectifier based on improved dual-diode pulse-doubling circuit[J]. Proceedings of the CSEE, 2024, 44(12): 4878-4891. [15] de Oliveira Costa Neto A, Soares A L, de Lima G B, et al. Optimized 12-pulse rectifier with generalized delta connection autotransformer and isolated SEPIC converters for sinusoidal input line current imposi- tion[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3204-3213. [16] 王景芳, 陈安臣, 姚绪梁, 等. 一种直流侧串联辅助单相整流器的24脉波整流器[J]. 中国电机工程学报, 2021, 41(23): 8120-8129. Wang Jingfang, Chen Anchen, Yao Xuliang, et al.A 24-pulse rectifier with an auxiliary single-phase rectifier in series at DC side[J]. Proceedings of the CSEE, 2021, 41(23): 8120-8129. [17] Choi S, Lee B S, Enjeti P N.New 24-pulse diode rectifier systems for utility interface of high-power AC motor drives[J]. IEEE Transactions on Industry Applications, 1997, 33(2): 531-541. [18] 廉玉欣, 杨世彦, 杨威. 基于非常规平衡电抗器的直流侧谐波抑制方法[J]. 电工技术学报, 2021, 36(18): 3957-3968. Lian Yuxin, Yang Shiyan, Yang Wei.The harmonic reduction method at DC link based on unconventional interphase reactor[J]. Transactions of China Electro- technical Society, 2021, 36(18): 3957-3968. [19] 杨用春, 杜翔宇, 唐健雄, 等. 基于改进移相变压器的综合调压合环装置及调控策略[J]. 电工技术学报, 2025, 40(8): 2532-2546. Yang Yongchun, Du Xiangyu, Tang Jianxiong, et al.Integrated voltage loop device and control strategy based on improved phase-shifting transformers[J]. Transactions of China Electrotechnical Society, 2025, 40(8): 2532-2546. [20] 史艳博, 葛红娟, 王永帅, 等. 基于无源电压纹波注入的24 脉航空交直流变换器[J]. 哈尔滨工程大学学报, 2024, 45(3): 590-598. Shi Yanbo, Ge Hongjuan, Wang Yongshuai, et al.24-pulse aviation AC-DC converter based on passive voltage ripple injection[J]. Journal of Harbin Enginee- ring University, 2024, 45(3): 590-598. [21] 杨继鑫, 史黎明, 殷正刚, 等. 基于辅助拾取模块的感应耦合能量传输系统电流谐波抑制方法[J]. 电工技术学报, 2024, 39(24): 7663-7673. Yang Jixin, Shi Liming, Yin Zhenggang, et al.A current harmonic suppression method for inductively coupled power transfer system based on auxiliary pickup module[J]. Transactions of China Electro- technical Society, 2024, 39(24): 7663-7673. [22] 刘建英, 任仁良. 飞机电源系统[M]. 北京: 中国民航出版社, 2013. [23] 付兴武, 郭晋龙, 杨玉岗. LLC谐振变换器中“Y”型磁集成变压器设计[J]. 辽宁工程技术大学学报(自然科学版), 2022, 41(3): 277-282. Fu Xingwu, Guo Jinlong, Yang Yugang.Design of “Y” type magnetic integrated transformer in LLC resonant converter[J]. Journal of Liaoning Technical University (Natural Science), 2022, 41(3): 277-282. [24] 刘勇智, 吕永健, 范冰洁, 等. 航空电机学[M]. 2版. 北京: 国防工业出版社, 2020. [25] 高蕾, 孟凡刚, 杨世彦, 等. 过移相和欠移相对12脉波整流系统的影响及抑制措施[J]. 电力自动化设备, 2015, 35(1): 85-93. Gao Lei, Meng Fangang, Yang Shiyan, et al.Influence of over/under phase-shift on 12-pulse rectifier system and its countermeasures[J]. Electric Power Automation Equipment, 2015, 35(1): 85-93. [26] 中国人民解放军总装备部. 飞机供电特性: GJB 181B—2012[S]. 北京: 总装备部军标出版发行部, 2013.