In China, the current renewable energy resources mainly use grid-following converters as grid-connected interfaces, which cannot provide inertia and damping support for power systems. In order to enhance the support capacity of renewable energy resources, grid-forming converters are emerging as a promising solution as they can emulate the dynamic property of synchronous generator and provide support. However, the grid-forming converter faces significant risks of transient synchronous instability. Current research primarily focuses on single grid-forming converter systems, which cannot be applied to multi-machine systems due to complex interactions between converters. Quantitative transient analysis and the method of stability region estimation for multiple paralleled grid-forming converter systems are absent.
To fill this gap, taking transient interaction and power coupling into consideration, the large-signal equivalent model of multiple grid-forming converters system is established. Based on this model, a set of Lyapunov functions is constructed, which accounts for damping dissipation, reactive power loop dynamics, and transient interactions, enabling intuitively and accurately plotting the stability region for multi-machine system. Then, by comparing the sizes of the stability regions, the impact of control parameters and grid parameters on the stability boundaries of grid-forming multi-machine systems is quantified. Furthermore, the influence of damping dissipation, reactive power loop dynamics, and transient interactions on the transient stability margin is explored. Finally, hardware-in-the-loop experiments validate the accuracy of the estimated maximum stability region.
The following conclusions can be drawn from the analysis in this paper: (1)Due to the complex interaction, the equivalence model and transient characteristics of multi-machine system are more complex than those of single-machine system. (2)The Lyapunov function set, which takes into account voltage dynamics, damping dissipation and transient interaction, can accurately estimate the maximum stability region of multiple grid-forming converter systems, and predict the transient synchronization stability via the location of the fault clearing point. (3)By comparing the size of the stability region, the increase of reference power, fault depth, and line impedance will reduce the stability region, and the increase of damping coefficient, inertia, and reactive droop coefficient will enlarge the stability region. The voltage dynamics and damping dissipation can increase the stability margin of the system, and the transient interaction between units can reduce the stability margin.
[1] 黄萌, 舒思睿, 李锡林, 等. 面向同步稳定性的电力电子并网变流器分析与控制研究综述[J]. 电工技术学报, 2024, 39(19): 5978-5994.
Huang Meng, Shu Sirui, Li Xilin, et al.A review of synchronization-stability-oriented analysis and control of power electronic grid-connected converters[J]. Transactions of China Electrotechnical Society, 2024, 39(19): 5978-5994.
[2] 谢小荣, 贺静波, 毛航银, 等. “双高” 电力系统稳定性的新问题及分类探讨[J]. 中国电机工程学报, 2021, 41(2): 461-475. Xie Xiaorong, He Jingbo, Mao Hangyin, et al. New issues and classification of power system stability with high shares of renewables and power electronics[J]. Proceedings of the CSEE, 2021, 41(2): 461-475.
[3] 詹长江, 吴恒, 王雄飞, 等. 构网型变流器稳定性研究综述[J]. 中国电机工程学报, 2023, 43(6): 2339-2359. Zhan Changjiang, Wu Heng, Wang Xiongfei, et al. An overview of stability studies of grid-forming voltage source converters[J]. Proceedings of the CSEE, 2023, 43(6): 2339-2359.
[4] 熊小玲, 李昕悦, 周琰, 等. 基于陷波器的构网型换流器同步频率谐振抑制策略[J]. 电工技术学报, 2024, 39(12): 3827-3839. Xiong Xiaoling, Li Xinyue, Zhou Yan, et al. Synchronous frequency resonance suppression of grid-forming converter based on Notch filter[J]. Transactions of China Electrotechnical Society, 2024, 39(12): 3827-3839.
[5]Luo Cong, Chen Yandong, Xu Yuancan, et al. Two-stage transient control for VSG considering fault current limitation and transient angle stability[J]. IEEE Transactions on Industrial Electronics, 2024, 71(7): 7169-7179.
[6] 李锡林, 查晓明, 田震, 等. 频率突变影响下基于Lyapunov法的孤岛微电网暂态稳定性分析[J]. 电工技术学报, 2023, 38(增刊1): 18-31, 55. Li Xilin, Zha Xiaoming, Tian Zhen, et al. Lyapunov based transient stability analysis of islanded microgrid under the influence of frequency abrupt change[J]. Transactions of China Electrotechnical Society, 2023, 38(S1): 18-31, 55.
[7]Xiong Xiaoling, Wu Chao, Blaabjerg F. Effects of virtual resistance on transient stability of virtual synchronous generators under grid voltage sag[J]. IEEE Transactions on Industrial Electronics, 2022, 69(5): 4754-4764.
[8]Pan Donghua, Wang Xiongfei, Liu Fangcheng, et al. Transient stability of voltage-source converters with grid-forming control: a design-oriented study[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1019-1033.
[9] 李明飞, 吴在军, 全相军, 等. 计及阻尼特性的构网型并网逆变器暂态同步稳定性分析[J]. 电力系统自动化, 2023, 47(15): 198-207. Li Mingfei, Wu Zaijun, Quan Xiangjun, et al. Transient synchronization stability analysis of grid-forming grid-connected inverter considering damping characteristics[J]. Automation of Electric Power Systems, 2023, 47(15): 198-207.
[10] 张静怡, 田震, 李锡林, 等. 考虑阻尼影响的虚拟同步发电机暂态同步稳定性量化分析[J/OL]. 电力系统自动化, 2024: 1-15. http://kns.cnki.net/kcms/detail/32.1180.TP.20240617.2227.004.html.
Zhang Jingyi, Tian Zhen, Li Xilin, et al.Quantitative analysis of transient synchronous stability of virtual synchronous generator considering damping effect[J/OL]. Automation of Electric Power Systems, 2024: 1-15. http://kns.cnki.net/kcms/detail/32.1180.TP.20240617.2227.004.html.
[11]Shuai Zhikang, Shen Chao, Liu Xuan, et al. Transient angle stability of virtual synchronous generators using Lyapunov's direct method[J]. IEEE Transactions on Smart Grid, 2019, 10(4): 4648-4661.
[12]Fu Xikun, Sun Jianjun, Huang Meng, et al. Large-signal stability of grid-forming and grid-following controls in voltage source converter: a comparative study[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7832-7840.
[13]Ge Pingjuan, Tu Chunming, Xiao Fan, et al. Design-oriented analysis and transient stability enhancement control for a virtual synchronous generator[J]. IEEE Transactions on Industrial Electronics, 2023, 70(3): 2675-2684.
[14] 魏凤廷, 张海涛, 王秀丽, 等. 计及电压动态特性的虚拟同步机暂态稳定性分析[J]. 电网技术, 2024, 48(7): 2910-2918.
Wei Fengting, Zhang Haitao, Wang Xiuli, et al.Transient stability analysis of virtual synchronous generator considering voltage dynamic characteristics[J]. Power System Technology, 2024, 48(7): 2910-2918.
[15] 黄萌, 凌扬坚, 耿华, 等. 功率同步控制的构网型变流器多机交互分析与稳定控制研究综述[J]. 高电压技术, 2023, 49(11): 4571-4583. Huang Meng, Ling Yangjian, Geng Hua, et al. An overview on multi-VSCs interaction analysis and stability controls of grid-forming converters with power synchronization control[J]. High Voltage Engineering, 2023, 49(11): 4571-4583.
[16]He Xiuqiang, Geng Hua. PLL synchronization stability of grid-connected multiconverter systems[J]. IEEE Transactions on Industry Applications, 2022, 58(1): 830-842.
[17] 王继磊, 张兴. 多逆变器并联系统暂态稳定性分析及其暂态电流注入策略[J/OL]. 高电压技术, 2024: 1-13. https://doi.org/10.13336/j.1003-6520.hve.20231201.
Wang Jilei, Zhang Xing.Transient stability analysis and transient current injection strategy of multi-inverter parallel system[J]. High Voltage Engineering, 2024: 1-13. https://doi.org/10.13336/j.1003-6520.hve.20231201.
[18]Pal D, Panigrahi B K. Reduced-order modeling and transient synchronization stability analysis of multiple heterogeneous grid-tied inverters[J]. IEEE Transactions on Power Delivery, 2023, 38(2): 1074-1085.
[19]Li Xilin, Tian Zhen, Zha Xiaoming, et al. Nonlinear modeling and stability analysis of grid-tied paralleled-converters systems based on the proposed dual-iterative equal area criterion[J]. IEEE Transactions on Power Electronics, 2023, 38(6): 7746-7759.
[20]He Xiuqiang, Pan Sisi, Geng Hua. Transient stability of hybrid power systems dominated by different types of grid-forming devices[J]. IEEE Transactions on Energy Conversion, 2022, 37(2): 868-879.
[21] 邹赵悦, 吴超, 王勇, 等. 基于等效同步功率的孤岛并联构网变流器系统暂态稳定性分析[J]. 电力系统自动化, 2024, 48(2): 140-150.
Zou Zhaoyue, Wu Chao, Wang Yong, et al.Transient stability analysis of islanded system with parallel grid-forming converters based on equivalent synchronous power[J]. Automation of Electric Power Systems, 2024, 48(2): 140-150.
[22]Wang Jilei, Zhang Xing, Li Ming. Transient stability analysis and improvement of multiparalleled virtual synchronous generators grid-connected system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2024, 12(4): 4094-4105.
[23]Li Yujun, Lu Yiyuan, Yang Jialun, et al. Synchronization stability of multiple VSGs embedded power system with controller limits[J]. IEEE Transactions on Power Systems, 2025, 40(1): 834-849.
[24]Chen Lei, Tang Jingguang, Qiao Xuefeng, et al. Investigation on transient stability enhancement of multi-VSG system incorporating resistive SFCLs based on deep reinforcement learning[J]. IEEE Transactions on Industry Applications, 2024, 60(1): 1780-1793.
[25] 易相彤, 沈超, 彭也伦, 等. 基于同调等值的多变流器系统聚合降阶建模[J]. 中国电机工程学报, 2022, 42(15): 5664-5675. Yi Xiangtong, Shen Chao, Peng Yelun, et al. Aggregation reduced-order modeling of multi-converter systems based on coherency equivalence method[J]. Proceedings of the CSEE, 2022, 42(15): 5664-5675.
[26] 李承昱, 许建中, 赵成勇, 等. 基于虚拟同步发电机控制的VSC类同调等值方法[J]. 电工技术学报, 2016, 31(13): 111-119. Li Chengyu, Xu Jianzhong, Zhao Chengyong, et al. Coherency equivalence method for voltage source converter based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 111-119.
[27]Moon Y H, Choi B K, Roh T H. Estimating the domain of attraction for power systems via a group of damping-reflected energy functions[J]. Automatica, 2000, 36(3): 419-425.
[28] 付熙坤, 黄萌, 凌扬坚, 等. 功率耦合和电流限幅影响下构网型变流器的暂态同步稳定分析[J]. 中国电机工程学报, 2024, 44(7): 2815-2825. Fu Xikun, Huang Meng, Ling Yangjian, et al. Transient synchronization stability analysis of grid-forming converter influenced by power-coupling and current-limiting[J]. Proceedings of the CSEE, 2024, 44(7): 2815-2825.
[29]Yorino N, Popov E, Zoka Y, et al. An application of critical trajectory method to BCU problem for transient stability studies[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4237-4244.
[30]Wang Huaiyuan, Ouyang Yucheng. Adaptive data recovery model for PMU data based on SDAE in transient stability assessment[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2519611.