[1] 何宁辉, 王世杰, 刘军福, 等. 基于深度学习的航拍图像绝缘子缺失检测方法研究[J]. 电力系统保护与控制, 2021, 49(12): 132-140.
He Ninghui, Wang Shijie, Liu Junfu, et al.Research on infrared image missing insulator detection method based on deep learning[J]. Power System Protection and Control, 2021, 49(12): 132-140.
[2] 刘传洋, 吴一全, 刘景景. 无人机航拍图像中绝缘子缺陷检测的深度学习方法研究进展[J/OL]. 电工技术学报, 2024: 1-21. (2024-09-04). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=DGJS20240903001&dbname=CJFD&dbcode=CJFQ.
Liu Chuanyang, Wu Yiquan, Liu Jingjing. Research progress of deep learning method for insulator defect detection in aerial images of unmanned aerial vehicles[J/OL]. China Industrial Economics, 2024: 1-21. (2024-09-04). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=DGJS20240903001&dbname=CJFD&dbcode=CJFQ.
[3] 李斌, 屈璐瑶, 朱新山, 等. 基于多尺度特征融合的绝缘子缺陷检测[J]. 电工技术学报, 2023, 38(1): 60-70.
Li Bin, Qu Luyao, Zhu Xinshan, et al.Insulator defect detection based on multi-scale feature fusion[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 60-70.
[4] 刘思言, 王博, 高昆仑, 等. 基于R-FCN的航拍巡检图像目标检测方法[J]. 电力系统自动化, 2019, 43(13): 162-168.
Liu Siyan, Wang Bo, Gao Kunlun, et al.Object detection method for aerial inspection image based on region-based fully convolutional network[J]. Automation of Electric Power Systems, 2019, 43(13): 162-168.
[5] Wang C Y, Bochkovskiy A, Liao H M.YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023: 7464-7475.
[6] Girshick R, Donahue J, Darrell T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 580-587.
[7] 徐建军, 黄立达, 闫丽梅, 等. 基于层次多任务深度学习的绝缘子自爆缺陷检测[J]. 电工技术学报, 2021, 36(7): 1407-1415.
Xu Jianjun, Huang Lida, Yan Limei, et al.Insulator self-explosion defect detection based on hierarchical multi-task deep learning[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1407-1415.
[8] 苟军年, 杜愫愫, 刘力. 基于改进掩膜区域卷积神经网络的输电线路绝缘子自爆检测[J]. 电工技术学报, 2023, 38(1): 47-59.
Gou Junnian, Du Susu, Liu Li.Transmission line insulator self-explosion detection based on improved mask region-convolutional neural network[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 47-59.
[9] 罗潇, 於锋, 彭勇. 基于深度学习的无人机电网巡检缺陷检测研究[J]. 电力系统保护与控制, 2022, 50(10): 132-139.
Luo Xiao, Yu Feng, Peng Yong.UAV power grid inspection defect detection based on deep learning[J]. Power System Protection and Control, 2022, 50(10): 132-139.
[10] 张焕龙, 齐企业, 张杰, 等. 基于改进YOLOv5的输电线路鸟巢检测方法研究[J]. 电力系统保护与控制, 2023, 51(2): 151-159.
Zhang Huanlong, Qi Qiye, Zhang Jie, et al.Bird nest detection method for transmission lines based on improved YOLOv5[J]. Power System Protection and Control, 2023, 51(2): 151-159.
[11] 王道累, 张正刚, 张世恒, 等. 基于密集连接网络的航拍绝缘子旋转目标精准定位方法[J]. 电力系统保护与控制, 2024, 52(1): 35-43.
Wang Daolei, Zhang Zhenggang, Zhang Shiheng, et al.Accurate positioning method of insulator rotating target in aerial photography based on dense connection network[J]. Power System Protection and Control, 2024, 52(1): 35-43.
[12] 贾晓芬, 于业齐, 郭永存, 等. 航拍绝缘子自爆缺陷的轻量化检测方法[J]. 高电压技术, 2023, 49(1): 294-300.
Jia Xiaofen, Yu Yeqi, Guo Yongcun, et al.Lightweight detection method of self-explosion defect of aerial photo insulator[J]. High Voltage Engineering, 2023, 49(1): 294-300.
[13] Zha Mingfeng, Qian Wenbin, Yi Wenlong, et al.A lightweight YOLOv4-based forestry pest detection method using coordinate attention and feature fusion[J]. Entropy, 2021, 23(12): 1587.
[14] 王道累, 张世恒, 袁斌霞, 等. 基于改进YOLOv5的轻量化玻璃绝缘子自爆缺陷检测研究[J]. 高电压技术, 2023, 49(10): 4382-4390.
Wang Daolei, Zhang Shiheng, Yuan Binxia, et al.Research on self-explosion defect detection of lightweight glass insulators based on improved YOLOv5[J]. High Voltage Engineering, 2023, 49(10): 4382-4390.
[15] 陈奎, 刘晓, 贾立娇, 等. 基于轻量化网络与增强多尺度特征融合的绝缘子缺陷检测[J]. 高电压技术, 2024, 50(3): 1289-1300.
Chen Kui, Liu Xiao, Jia Lijiao, et al.Insulator defect detection based on lightweight network and enhanced multi-scale feature fusion[J]. High Voltage Engineering, 2024, 50(3): 1289-1300.
[16] 姜香菊, 王瑞彤, 马彦鸿. 基于轻量级改进RT-DETR边缘部署算法的绝缘子缺陷检测[J/OL]. 电工技术学报, 2024: 1-14. (2024-04-26). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=DGJS20240423004&dbname=CJFD&dbcode=CJFQ.
Jiang Xiangju, Wang Ruitong, Ma Yanhong. Insulator defect detection based on lightweight improved RT-DETR edge deployment algorithm[J/OL]. China Industrial Economics, 2024: 1-14. (2024-04-26). http://kns.cnki.net/KCMS/detail/detail.aspx? filename=DGJS20240423004&dbname=CJFD&dbcode=CJFQ.
[17] 阮顺领,王京,顾清华,等.面向边缘计算的矿区障碍检测模型研究[J/OL].煤炭科学技术,1-12[2024-09-23].
Ruan Shunling, Wang Jing, Gu Qinghua, et al.Research on mining area obstacle detection model for edge computing[J/OL]. Coal Science and Technology, 1-12[2024-09-23].
[18] 李登攀, 任晓明, 颜楠楠. 基于无人机航拍的绝缘子掉串实时检测研究[J]. 上海交通大学学报, 2022, 56(8): 994-1003.
Li Dengpan, Ren Xiaoming, Yan Nannan.Real-time detection of insulator drop string based on UAV aerial photography[J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 994-1003.
[19] 罗志聪,何陈涛,陈登捷,等.基于轻量化YOLOv8的百香果快速检测模型[J/OL].农业机械学报,1-12[2024-09-23].
Luo Zhicong, He Chentao, Chen Dengjie, et al.Passion fruit rapid detection model based on lightweight YOLOv8[J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 1-12[2024-09-23].
[20] 王年涛, 王淑青, 黄剑锋, 等. 基于改进YOLOv5神经网络的绝缘子缺陷检测方法[J]. 激光杂志, 2022, 43(8): 60-65.
Wang Niantao, Wang Shuqing, Huang Jianfeng, et al.Insulator defect detection method based on improved YOLOv5 neural network[J]. Laser Journal, 2022, 43(8): 60-65.
[21] Kaiser L, Gomez A N, Chollet F. Depthwise separable convolutions for neural machine translation[EB/OL].2017: 1706.03059. https://arxiv.org/abs/1706.03059v2.
[22] Han Kai, Wang Yunhe, Tian Qi, et al.GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2020: 1580-1589.
[23] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[24] Li Hao, Kadav A, Durdanovic I, et al. Pruning filters for efficient ConvNets[EB/OL].2016: 1608.08710. https://arxiv.org/abs/1608.08710v3.
[25] Gou Jianping, Yu Baosheng, Maybank S J, et al.Knowledge distillation: a survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819.
[26] Tao Xian, Zhang Dapeng, Wang Zihao, et al.Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(4): 1486-1498.
[27] 第八届”泰迪杯” 数据挖掘挑战赛B题:电力巡检智能缺陷检测.[2024-04-19]. https://www.tipdm.org/u/cms/www/202003/0104085491vr.pdf
The 8th Teddy Cup Data Mining Challenge B: Intelligent Defect Detection for Power Inspection. [2024-04-19]. https://www.tipdm.org/u/cms/www/202003/0104085491vr.pdf |